Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
dp_factory = {'cuda': MMDataParallel, 'cpu': MMDataParallel} | |
ddp_factory = {'cuda': MMDistributedDataParallel} | |
def build_dp(model, device='cuda', dim=0, *args, **kwargs): | |
"""build DataParallel module by device type. | |
if device is cuda, return a MMDataParallel model; if device is mlu, | |
return a MLUDataParallel model. | |
Args: | |
model (:class:`nn.Module`): model to be parallelized. | |
device (str): device type, cuda, cpu or mlu. Defaults to cuda. | |
dim (int): Dimension used to scatter the data. Defaults to 0. | |
Returns: | |
nn.Module: the model to be parallelized. | |
""" | |
if device == 'npu': | |
from mmcv.device.npu import NPUDataParallel | |
dp_factory['npu'] = NPUDataParallel | |
torch.npu.set_device(kwargs['device_ids'][0]) | |
torch.npu.set_compile_mode(jit_compile=False) | |
model = model.npu() | |
elif device == 'cuda': | |
model = model.cuda(kwargs['device_ids'][0]) | |
elif device == 'mlu': | |
from mmcv.device.mlu import MLUDataParallel | |
dp_factory['mlu'] = MLUDataParallel | |
model = model.mlu() | |
return dp_factory[device](model, dim=dim, *args, **kwargs) | |
def build_ddp(model, device='cuda', *args, **kwargs): | |
"""Build DistributedDataParallel module by device type. | |
If device is cuda, return a MMDistributedDataParallel model; | |
if device is mlu, return a MLUDistributedDataParallel model. | |
Args: | |
model (:class:`nn.Module`): module to be parallelized. | |
device (str): device type, mlu or cuda. | |
Returns: | |
:class:`nn.Module`: the module to be parallelized | |
References: | |
.. [1] https://pytorch.org/docs/stable/generated/torch.nn.parallel. | |
DistributedDataParallel.html | |
""" | |
assert device in ['cuda', 'mlu', | |
'npu'], 'Only available for cuda or mlu or npu devices.' | |
if device == 'npu': | |
from mmcv.device.npu import NPUDistributedDataParallel | |
torch.npu.set_compile_mode(jit_compile=False) | |
ddp_factory['npu'] = NPUDistributedDataParallel | |
model = model.npu() | |
elif device == 'cuda': | |
model = model.cuda() | |
elif device == 'mlu': | |
from mmcv.device.mlu import MLUDistributedDataParallel | |
ddp_factory['mlu'] = MLUDistributedDataParallel | |
model = model.mlu() | |
return ddp_factory[device](model, *args, **kwargs) | |
def is_npu_available(): | |
"""Returns a bool indicating if NPU is currently available.""" | |
return hasattr(torch, 'npu') and torch.npu.is_available() | |
def is_mlu_available(): | |
"""Returns a bool indicating if MLU is currently available.""" | |
return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() | |
def get_device(): | |
"""Returns an available device, cpu, cuda or mlu.""" | |
is_device_available = { | |
'npu': is_npu_available(), | |
'cuda': torch.cuda.is_available(), | |
'mlu': is_mlu_available() | |
} | |
device_list = [k for k, v in is_device_available.items() if v] | |
return device_list[0] if len(device_list) >= 1 else 'cpu' | |