RockeyCoss
add code files”
51f6859
raw
history blame
118 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import inspect
import math
import warnings
import cv2
import mmcv
import numpy as np
from numpy import random
from mmdet.core import BitmapMasks, PolygonMasks, find_inside_bboxes
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps
from mmdet.utils import log_img_scale
from ..builder import PIPELINES
try:
from imagecorruptions import corrupt
except ImportError:
corrupt = None
try:
import albumentations
from albumentations import Compose
except ImportError:
albumentations = None
Compose = None
@PIPELINES.register_module()
class Resize:
"""Resize images & bbox & mask.
This transform resizes the input image to some scale. Bboxes and masks are
then resized with the same scale factor. If the input dict contains the key
"scale", then the scale in the input dict is used, otherwise the specified
scale in the init method is used. If the input dict contains the key
"scale_factor" (if MultiScaleFlipAug does not give img_scale but
scale_factor), the actual scale will be computed by image shape and
scale_factor.
`img_scale` can either be a tuple (single-scale) or a list of tuple
(multi-scale). There are 3 multiscale modes:
- ``ratio_range is not None``: randomly sample a ratio from the ratio \
range and multiply it with the image scale.
- ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \
sample a scale from the multiscale range.
- ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \
sample a scale from multiple scales.
Args:
img_scale (tuple or list[tuple]): Images scales for resizing.
multiscale_mode (str): Either "range" or "value".
ratio_range (tuple[float]): (min_ratio, max_ratio)
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend.
override (bool, optional): Whether to override `scale` and
`scale_factor` so as to call resize twice. Default False. If True,
after the first resizing, the existed `scale` and `scale_factor`
will be ignored so the second resizing can be allowed.
This option is a work-around for multiple times of resize in DETR.
Defaults to False.
"""
def __init__(self,
img_scale=None,
multiscale_mode='range',
ratio_range=None,
keep_ratio=True,
bbox_clip_border=True,
backend='cv2',
interpolation='bilinear',
override=False):
if img_scale is None:
self.img_scale = None
else:
if isinstance(img_scale, list):
self.img_scale = img_scale
else:
self.img_scale = [img_scale]
assert mmcv.is_list_of(self.img_scale, tuple)
if ratio_range is not None:
# mode 1: given a scale and a range of image ratio
assert len(self.img_scale) == 1
else:
# mode 2: given multiple scales or a range of scales
assert multiscale_mode in ['value', 'range']
self.backend = backend
self.multiscale_mode = multiscale_mode
self.ratio_range = ratio_range
self.keep_ratio = keep_ratio
# TODO: refactor the override option in Resize
self.interpolation = interpolation
self.override = override
self.bbox_clip_border = bbox_clip_border
@staticmethod
def random_select(img_scales):
"""Randomly select an img_scale from given candidates.
Args:
img_scales (list[tuple]): Images scales for selection.
Returns:
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \
where ``img_scale`` is the selected image scale and \
``scale_idx`` is the selected index in the given candidates.
"""
assert mmcv.is_list_of(img_scales, tuple)
scale_idx = np.random.randint(len(img_scales))
img_scale = img_scales[scale_idx]
return img_scale, scale_idx
@staticmethod
def random_sample(img_scales):
"""Randomly sample an img_scale when ``multiscale_mode=='range'``.
Args:
img_scales (list[tuple]): Images scale range for sampling.
There must be two tuples in img_scales, which specify the lower
and upper bound of image scales.
Returns:
(tuple, None): Returns a tuple ``(img_scale, None)``, where \
``img_scale`` is sampled scale and None is just a placeholder \
to be consistent with :func:`random_select`.
"""
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2
img_scale_long = [max(s) for s in img_scales]
img_scale_short = [min(s) for s in img_scales]
long_edge = np.random.randint(
min(img_scale_long),
max(img_scale_long) + 1)
short_edge = np.random.randint(
min(img_scale_short),
max(img_scale_short) + 1)
img_scale = (long_edge, short_edge)
return img_scale, None
@staticmethod
def random_sample_ratio(img_scale, ratio_range):
"""Randomly sample an img_scale when ``ratio_range`` is specified.
A ratio will be randomly sampled from the range specified by
``ratio_range``. Then it would be multiplied with ``img_scale`` to
generate sampled scale.
Args:
img_scale (tuple): Images scale base to multiply with ratio.
ratio_range (tuple[float]): The minimum and maximum ratio to scale
the ``img_scale``.
Returns:
(tuple, None): Returns a tuple ``(scale, None)``, where \
``scale`` is sampled ratio multiplied with ``img_scale`` and \
None is just a placeholder to be consistent with \
:func:`random_select`.
"""
assert isinstance(img_scale, tuple) and len(img_scale) == 2
min_ratio, max_ratio = ratio_range
assert min_ratio <= max_ratio
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio)
return scale, None
def _random_scale(self, results):
"""Randomly sample an img_scale according to ``ratio_range`` and
``multiscale_mode``.
If ``ratio_range`` is specified, a ratio will be sampled and be
multiplied with ``img_scale``.
If multiple scales are specified by ``img_scale``, a scale will be
sampled according to ``multiscale_mode``.
Otherwise, single scale will be used.
Args:
results (dict): Result dict from :obj:`dataset`.
Returns:
dict: Two new keys 'scale` and 'scale_idx` are added into \
``results``, which would be used by subsequent pipelines.
"""
if self.ratio_range is not None:
scale, scale_idx = self.random_sample_ratio(
self.img_scale[0], self.ratio_range)
elif len(self.img_scale) == 1:
scale, scale_idx = self.img_scale[0], 0
elif self.multiscale_mode == 'range':
scale, scale_idx = self.random_sample(self.img_scale)
elif self.multiscale_mode == 'value':
scale, scale_idx = self.random_select(self.img_scale)
else:
raise NotImplementedError
results['scale'] = scale
results['scale_idx'] = scale_idx
def _resize_img(self, results):
"""Resize images with ``results['scale']``."""
for key in results.get('img_fields', ['img']):
if self.keep_ratio:
img, scale_factor = mmcv.imrescale(
results[key],
results['scale'],
return_scale=True,
interpolation=self.interpolation,
backend=self.backend)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results[key].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results[key],
results['scale'],
return_scale=True,
interpolation=self.interpolation,
backend=self.backend)
results[key] = img
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
results['img_shape'] = img.shape
# in case that there is no padding
results['pad_shape'] = img.shape
results['scale_factor'] = scale_factor
results['keep_ratio'] = self.keep_ratio
def _resize_bboxes(self, results):
"""Resize bounding boxes with ``results['scale_factor']``."""
for key in results.get('bbox_fields', []):
bboxes = results[key] * results['scale_factor']
if self.bbox_clip_border:
img_shape = results['img_shape']
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
results[key] = bboxes
def _resize_masks(self, results):
"""Resize masks with ``results['scale']``"""
for key in results.get('mask_fields', []):
if results[key] is None:
continue
if self.keep_ratio:
results[key] = results[key].rescale(results['scale'])
else:
results[key] = results[key].resize(results['img_shape'][:2])
def _resize_seg(self, results):
"""Resize semantic segmentation map with ``results['scale']``."""
for key in results.get('seg_fields', []):
if self.keep_ratio:
gt_seg = mmcv.imrescale(
results[key],
results['scale'],
interpolation='nearest',
backend=self.backend)
else:
gt_seg = mmcv.imresize(
results[key],
results['scale'],
interpolation='nearest',
backend=self.backend)
results[key] = gt_seg
def __call__(self, results):
"""Call function to resize images, bounding boxes, masks, semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \
'keep_ratio' keys are added into result dict.
"""
if 'scale' not in results:
if 'scale_factor' in results:
img_shape = results['img'].shape[:2]
scale_factor = results['scale_factor']
assert isinstance(scale_factor, float)
results['scale'] = tuple(
[int(x * scale_factor) for x in img_shape][::-1])
else:
self._random_scale(results)
else:
if not self.override:
assert 'scale_factor' not in results, (
'scale and scale_factor cannot be both set.')
else:
results.pop('scale')
if 'scale_factor' in results:
results.pop('scale_factor')
self._random_scale(results)
self._resize_img(results)
self._resize_bboxes(results)
self._resize_masks(results)
self._resize_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'multiscale_mode={self.multiscale_mode}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@PIPELINES.register_module()
class RandomFlip:
"""Flip the image & bbox & mask.
If the input dict contains the key "flip", then the flag will be used,
otherwise it will be randomly decided by a ratio specified in the init
method.
When random flip is enabled, ``flip_ratio``/``direction`` can either be a
float/string or tuple of float/string. There are 3 flip modes:
- ``flip_ratio`` is float, ``direction`` is string: the image will be
``direction``ly flipped with probability of ``flip_ratio`` .
E.g., ``flip_ratio=0.5``, ``direction='horizontal'``,
then image will be horizontally flipped with probability of 0.5.
- ``flip_ratio`` is float, ``direction`` is list of string: the image will
be ``direction[i]``ly flipped with probability of
``flip_ratio/len(direction)``.
E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``,
then image will be horizontally flipped with probability of 0.25,
vertically with probability of 0.25.
- ``flip_ratio`` is list of float, ``direction`` is list of string:
given ``len(flip_ratio) == len(direction)``, the image will
be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``.
E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal',
'vertical']``, then image will be horizontally flipped with probability
of 0.3, vertically with probability of 0.5.
Args:
flip_ratio (float | list[float], optional): The flipping probability.
Default: None.
direction(str | list[str], optional): The flipping direction. Options
are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'.
If input is a list, the length must equal ``flip_ratio``. Each
element in ``flip_ratio`` indicates the flip probability of
corresponding direction.
"""
def __init__(self, flip_ratio=None, direction='horizontal'):
if isinstance(flip_ratio, list):
assert mmcv.is_list_of(flip_ratio, float)
assert 0 <= sum(flip_ratio) <= 1
elif isinstance(flip_ratio, float):
assert 0 <= flip_ratio <= 1
elif flip_ratio is None:
pass
else:
raise ValueError('flip_ratios must be None, float, '
'or list of float')
self.flip_ratio = flip_ratio
valid_directions = ['horizontal', 'vertical', 'diagonal']
if isinstance(direction, str):
assert direction in valid_directions
elif isinstance(direction, list):
assert mmcv.is_list_of(direction, str)
assert set(direction).issubset(set(valid_directions))
else:
raise ValueError('direction must be either str or list of str')
self.direction = direction
if isinstance(flip_ratio, list):
assert len(self.flip_ratio) == len(self.direction)
def bbox_flip(self, bboxes, img_shape, direction):
"""Flip bboxes horizontally.
Args:
bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical'.
Returns:
numpy.ndarray: Flipped bounding boxes.
"""
assert bboxes.shape[-1] % 4 == 0
flipped = bboxes.copy()
if direction == 'horizontal':
w = img_shape[1]
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
elif direction == 'vertical':
h = img_shape[0]
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
elif direction == 'diagonal':
w = img_shape[1]
h = img_shape[0]
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
else:
raise ValueError(f"Invalid flipping direction '{direction}'")
return flipped
def __call__(self, results):
"""Call function to flip bounding boxes, masks, semantic segmentation
maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Flipped results, 'flip', 'flip_direction' keys are added \
into result dict.
"""
if 'flip' not in results:
if isinstance(self.direction, list):
# None means non-flip
direction_list = self.direction + [None]
else:
# None means non-flip
direction_list = [self.direction, None]
if isinstance(self.flip_ratio, list):
non_flip_ratio = 1 - sum(self.flip_ratio)
flip_ratio_list = self.flip_ratio + [non_flip_ratio]
else:
non_flip_ratio = 1 - self.flip_ratio
# exclude non-flip
single_ratio = self.flip_ratio / (len(direction_list) - 1)
flip_ratio_list = [single_ratio] * (len(direction_list) -
1) + [non_flip_ratio]
cur_dir = np.random.choice(direction_list, p=flip_ratio_list)
results['flip'] = cur_dir is not None
if 'flip_direction' not in results:
results['flip_direction'] = cur_dir
if results['flip']:
# flip image
for key in results.get('img_fields', ['img']):
results[key] = mmcv.imflip(
results[key], direction=results['flip_direction'])
# flip bboxes
for key in results.get('bbox_fields', []):
results[key] = self.bbox_flip(results[key],
results['img_shape'],
results['flip_direction'])
# flip masks
for key in results.get('mask_fields', []):
results[key] = results[key].flip(results['flip_direction'])
# flip segs
for key in results.get('seg_fields', []):
results[key] = mmcv.imflip(
results[key], direction=results['flip_direction'])
return results
def __repr__(self):
return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})'
@PIPELINES.register_module()
class RandomShift:
"""Shift the image and box given shift pixels and probability.
Args:
shift_ratio (float): Probability of shifts. Default 0.5.
max_shift_px (int): The max pixels for shifting. Default 32.
filter_thr_px (int): The width and height threshold for filtering.
The bbox and the rest of the targets below the width and
height threshold will be filtered. Default 1.
"""
def __init__(self, shift_ratio=0.5, max_shift_px=32, filter_thr_px=1):
assert 0 <= shift_ratio <= 1
assert max_shift_px >= 0
self.shift_ratio = shift_ratio
self.max_shift_px = max_shift_px
self.filter_thr_px = int(filter_thr_px)
# The key correspondence from bboxes to labels.
self.bbox2label = {
'gt_bboxes': 'gt_labels',
'gt_bboxes_ignore': 'gt_labels_ignore'
}
def __call__(self, results):
"""Call function to random shift images, bounding boxes.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Shift results.
"""
if random.random() < self.shift_ratio:
img_shape = results['img'].shape[:2]
random_shift_x = random.randint(-self.max_shift_px,
self.max_shift_px)
random_shift_y = random.randint(-self.max_shift_px,
self.max_shift_px)
new_x = max(0, random_shift_x)
ori_x = max(0, -random_shift_x)
new_y = max(0, random_shift_y)
ori_y = max(0, -random_shift_y)
# TODO: support mask and semantic segmentation maps.
for key in results.get('bbox_fields', []):
bboxes = results[key].copy()
bboxes[..., 0::2] += random_shift_x
bboxes[..., 1::2] += random_shift_y
# clip border
bboxes[..., 0::2] = np.clip(bboxes[..., 0::2], 0, img_shape[1])
bboxes[..., 1::2] = np.clip(bboxes[..., 1::2], 0, img_shape[0])
# remove invalid bboxes
bbox_w = bboxes[..., 2] - bboxes[..., 0]
bbox_h = bboxes[..., 3] - bboxes[..., 1]
valid_inds = (bbox_w > self.filter_thr_px) & (
bbox_h > self.filter_thr_px)
# If the shift does not contain any gt-bbox area, skip this
# image.
if key == 'gt_bboxes' and not valid_inds.any():
return results
bboxes = bboxes[valid_inds]
results[key] = bboxes
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = self.bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
for key in results.get('img_fields', ['img']):
img = results[key]
new_img = np.zeros_like(img)
img_h, img_w = img.shape[:2]
new_h = img_h - np.abs(random_shift_y)
new_w = img_w - np.abs(random_shift_x)
new_img[new_y:new_y + new_h, new_x:new_x + new_w] \
= img[ori_y:ori_y + new_h, ori_x:ori_x + new_w]
results[key] = new_img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(max_shift_px={self.max_shift_px}, '
return repr_str
@PIPELINES.register_module()
class Pad:
"""Pad the image & masks & segmentation map.
There are two padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number.
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor",
Args:
size (tuple, optional): Fixed padding size.
size_divisor (int, optional): The divisor of padded size.
pad_to_square (bool): Whether to pad the image into a square.
Currently only used for YOLOX. Default: False.
pad_val (dict, optional): A dict for padding value, the default
value is `dict(img=0, masks=0, seg=255)`.
"""
def __init__(self,
size=None,
size_divisor=None,
pad_to_square=False,
pad_val=dict(img=0, masks=0, seg=255)):
self.size = size
self.size_divisor = size_divisor
if isinstance(pad_val, float) or isinstance(pad_val, int):
warnings.warn(
'pad_val of float type is deprecated now, '
f'please use pad_val=dict(img={pad_val}, '
f'masks={pad_val}, seg=255) instead.', DeprecationWarning)
pad_val = dict(img=pad_val, masks=pad_val, seg=255)
assert isinstance(pad_val, dict)
self.pad_val = pad_val
self.pad_to_square = pad_to_square
if pad_to_square:
assert size is None and size_divisor is None, \
'The size and size_divisor must be None ' \
'when pad2square is True'
else:
assert size is not None or size_divisor is not None, \
'only one of size and size_divisor should be valid'
assert size is None or size_divisor is None
def _pad_img(self, results):
"""Pad images according to ``self.size``."""
pad_val = self.pad_val.get('img', 0)
for key in results.get('img_fields', ['img']):
if self.pad_to_square:
max_size = max(results[key].shape[:2])
self.size = (max_size, max_size)
if self.size is not None:
padded_img = mmcv.impad(
results[key], shape=self.size, pad_val=pad_val)
elif self.size_divisor is not None:
padded_img = mmcv.impad_to_multiple(
results[key], self.size_divisor, pad_val=pad_val)
results[key] = padded_img
results['pad_shape'] = padded_img.shape
results['pad_fixed_size'] = self.size
results['pad_size_divisor'] = self.size_divisor
def _pad_masks(self, results):
"""Pad masks according to ``results['pad_shape']``."""
pad_shape = results['pad_shape'][:2]
pad_val = self.pad_val.get('masks', 0)
for key in results.get('mask_fields', []):
results[key] = results[key].pad(pad_shape, pad_val=pad_val)
def _pad_seg(self, results):
"""Pad semantic segmentation map according to
``results['pad_shape']``."""
pad_val = self.pad_val.get('seg', 255)
for key in results.get('seg_fields', []):
results[key] = mmcv.impad(
results[key], shape=results['pad_shape'][:2], pad_val=pad_val)
def __call__(self, results):
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
self._pad_masks(results)
self._pad_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, '
repr_str += f'size_divisor={self.size_divisor}, '
repr_str += f'pad_to_square={self.pad_to_square}, '
repr_str += f'pad_val={self.pad_val})'
return repr_str
@PIPELINES.register_module()
class Normalize:
"""Normalize the image.
Added key is "img_norm_cfg".
Args:
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB,
default is true.
"""
def __init__(self, mean, std, to_rgb=True):
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_rgb = to_rgb
def __call__(self, results):
"""Call function to normalize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Normalized results, 'img_norm_cfg' key is added into
result dict.
"""
for key in results.get('img_fields', ['img']):
results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
self.to_rgb)
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
return repr_str
@PIPELINES.register_module()
class RandomCrop:
"""Random crop the image & bboxes & masks.
The absolute `crop_size` is sampled based on `crop_type` and `image_size`,
then the cropped results are generated.
Args:
crop_size (tuple): The relative ratio or absolute pixels of
height and width.
crop_type (str, optional): one of "relative_range", "relative",
"absolute", "absolute_range". "relative" randomly crops
(h * crop_size[0], w * crop_size[1]) part from an input of size
(h, w). "relative_range" uniformly samples relative crop size from
range [crop_size[0], 1] and [crop_size[1], 1] for height and width
respectively. "absolute" crops from an input with absolute size
(crop_size[0], crop_size[1]). "absolute_range" uniformly samples
crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
in range [crop_size[0], min(w, crop_size[1])]. Default "absolute".
allow_negative_crop (bool, optional): Whether to allow a crop that does
not contain any bbox area. Default False.
recompute_bbox (bool, optional): Whether to re-compute the boxes based
on cropped instance masks. Default False.
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
Note:
- If the image is smaller than the absolute crop size, return the
original image.
- The keys for bboxes, labels and masks must be aligned. That is,
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and
`gt_bboxes_ignore` corresponds to `gt_labels_ignore` and
`gt_masks_ignore`.
- If the crop does not contain any gt-bbox region and
`allow_negative_crop` is set to False, skip this image.
"""
def __init__(self,
crop_size,
crop_type='absolute',
allow_negative_crop=False,
recompute_bbox=False,
bbox_clip_border=True):
if crop_type not in [
'relative_range', 'relative', 'absolute', 'absolute_range'
]:
raise ValueError(f'Invalid crop_type {crop_type}.')
if crop_type in ['absolute', 'absolute_range']:
assert crop_size[0] > 0 and crop_size[1] > 0
assert isinstance(crop_size[0], int) and isinstance(
crop_size[1], int)
else:
assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1
self.crop_size = crop_size
self.crop_type = crop_type
self.allow_negative_crop = allow_negative_crop
self.bbox_clip_border = bbox_clip_border
self.recompute_bbox = recompute_bbox
# The key correspondence from bboxes to labels and masks.
self.bbox2label = {
'gt_bboxes': 'gt_labels',
'gt_bboxes_ignore': 'gt_labels_ignore'
}
self.bbox2mask = {
'gt_bboxes': 'gt_masks',
'gt_bboxes_ignore': 'gt_masks_ignore'
}
def _crop_data(self, results, crop_size, allow_negative_crop):
"""Function to randomly crop images, bounding boxes, masks, semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
crop_size (tuple): Expected absolute size after cropping, (h, w).
allow_negative_crop (bool): Whether to allow a crop that does not
contain any bbox area. Default to False.
Returns:
dict: Randomly cropped results, 'img_shape' key in result dict is
updated according to crop size.
"""
assert crop_size[0] > 0 and crop_size[1] > 0
for key in results.get('img_fields', ['img']):
img = results[key]
margin_h = max(img.shape[0] - crop_size[0], 0)
margin_w = max(img.shape[1] - crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results[key] = img
results['img_shape'] = img_shape
# crop bboxes accordingly and clip to the image boundary
for key in results.get('bbox_fields', []):
# e.g. gt_bboxes and gt_bboxes_ignore
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
dtype=np.float32)
bboxes = results[key] - bbox_offset
if self.bbox_clip_border:
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
bboxes[:, 3] > bboxes[:, 1])
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (key == 'gt_bboxes' and not valid_inds.any()
and not allow_negative_crop):
return None
results[key] = bboxes[valid_inds, :]
# label fields. e.g. gt_labels and gt_labels_ignore
label_key = self.bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][valid_inds]
# mask fields, e.g. gt_masks and gt_masks_ignore
mask_key = self.bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
if self.recompute_bbox:
results[key] = results[mask_key].get_bboxes()
# crop semantic seg
for key in results.get('seg_fields', []):
results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]
return results
def _get_crop_size(self, image_size):
"""Randomly generates the absolute crop size based on `crop_type` and
`image_size`.
Args:
image_size (tuple): (h, w).
Returns:
crop_size (tuple): (crop_h, crop_w) in absolute pixels.
"""
h, w = image_size
if self.crop_type == 'absolute':
return (min(self.crop_size[0], h), min(self.crop_size[1], w))
elif self.crop_type == 'absolute_range':
assert self.crop_size[0] <= self.crop_size[1]
crop_h = np.random.randint(
min(h, self.crop_size[0]),
min(h, self.crop_size[1]) + 1)
crop_w = np.random.randint(
min(w, self.crop_size[0]),
min(w, self.crop_size[1]) + 1)
return crop_h, crop_w
elif self.crop_type == 'relative':
crop_h, crop_w = self.crop_size
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
elif self.crop_type == 'relative_range':
crop_size = np.asarray(self.crop_size, dtype=np.float32)
crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size)
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
def __call__(self, results):
"""Call function to randomly crop images, bounding boxes, masks,
semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Randomly cropped results, 'img_shape' key in result dict is
updated according to crop size.
"""
image_size = results['img'].shape[:2]
crop_size = self._get_crop_size(image_size)
results = self._crop_data(results, crop_size, self.allow_negative_crop)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(crop_size={self.crop_size}, '
repr_str += f'crop_type={self.crop_type}, '
repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@PIPELINES.register_module()
class SegRescale:
"""Rescale semantic segmentation maps.
Args:
scale_factor (float): The scale factor of the final output.
backend (str): Image rescale backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
"""
def __init__(self, scale_factor=1, backend='cv2'):
self.scale_factor = scale_factor
self.backend = backend
def __call__(self, results):
"""Call function to scale the semantic segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with semantic segmentation map scaled.
"""
for key in results.get('seg_fields', []):
if self.scale_factor != 1:
results[key] = mmcv.imrescale(
results[key],
self.scale_factor,
interpolation='nearest',
backend=self.backend)
return results
def __repr__(self):
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})'
@PIPELINES.register_module()
class PhotoMetricDistortion:
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def __call__(self, results):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
if 'img_fields' in results:
assert results['img_fields'] == ['img'], \
'Only single img_fields is allowed'
img = results['img']
img = img.astype(np.float32)
# random brightness
if random.randint(2):
delta = random.uniform(-self.brightness_delta,
self.brightness_delta)
img += delta
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = random.randint(2)
if mode == 1:
if random.randint(2):
alpha = random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# convert color from BGR to HSV
img = mmcv.bgr2hsv(img)
# random saturation
if random.randint(2):
img[..., 1] *= random.uniform(self.saturation_lower,
self.saturation_upper)
# random hue
if random.randint(2):
img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
img[..., 0][img[..., 0] > 360] -= 360
img[..., 0][img[..., 0] < 0] += 360
# convert color from HSV to BGR
img = mmcv.hsv2bgr(img)
# random contrast
if mode == 0:
if random.randint(2):
alpha = random.uniform(self.contrast_lower,
self.contrast_upper)
img *= alpha
# randomly swap channels
if random.randint(2):
img = img[..., random.permutation(3)]
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
repr_str += 'contrast_range='
repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
repr_str += 'saturation_range='
repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
repr_str += f'hue_delta={self.hue_delta})'
return repr_str
@PIPELINES.register_module()
class Expand:
"""Random expand the image & bboxes.
Randomly place the original image on a canvas of 'ratio' x original image
size filled with mean values. The ratio is in the range of ratio_range.
Args:
mean (tuple): mean value of dataset.
to_rgb (bool): if need to convert the order of mean to align with RGB.
ratio_range (tuple): range of expand ratio.
prob (float): probability of applying this transformation
"""
def __init__(self,
mean=(0, 0, 0),
to_rgb=True,
ratio_range=(1, 4),
seg_ignore_label=None,
prob=0.5):
self.to_rgb = to_rgb
self.ratio_range = ratio_range
if to_rgb:
self.mean = mean[::-1]
else:
self.mean = mean
self.min_ratio, self.max_ratio = ratio_range
self.seg_ignore_label = seg_ignore_label
self.prob = prob
def __call__(self, results):
"""Call function to expand images, bounding boxes.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images, bounding boxes expanded
"""
if random.uniform(0, 1) > self.prob:
return results
if 'img_fields' in results:
assert results['img_fields'] == ['img'], \
'Only single img_fields is allowed'
img = results['img']
h, w, c = img.shape
ratio = random.uniform(self.min_ratio, self.max_ratio)
# speedup expand when meets large image
if np.all(self.mean == self.mean[0]):
expand_img = np.empty((int(h * ratio), int(w * ratio), c),
img.dtype)
expand_img.fill(self.mean[0])
else:
expand_img = np.full((int(h * ratio), int(w * ratio), c),
self.mean,
dtype=img.dtype)
left = int(random.uniform(0, w * ratio - w))
top = int(random.uniform(0, h * ratio - h))
expand_img[top:top + h, left:left + w] = img
results['img'] = expand_img
# expand bboxes
for key in results.get('bbox_fields', []):
results[key] = results[key] + np.tile(
(left, top), 2).astype(results[key].dtype)
# expand masks
for key in results.get('mask_fields', []):
results[key] = results[key].expand(
int(h * ratio), int(w * ratio), top, left)
# expand segs
for key in results.get('seg_fields', []):
gt_seg = results[key]
expand_gt_seg = np.full((int(h * ratio), int(w * ratio)),
self.seg_ignore_label,
dtype=gt_seg.dtype)
expand_gt_seg[top:top + h, left:left + w] = gt_seg
results[key] = expand_gt_seg
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'seg_ignore_label={self.seg_ignore_label})'
return repr_str
@PIPELINES.register_module()
class MinIoURandomCrop:
"""Random crop the image & bboxes, the cropped patches have minimum IoU
requirement with original image & bboxes, the IoU threshold is randomly
selected from min_ious.
Args:
min_ious (tuple): minimum IoU threshold for all intersections with
bounding boxes
min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w,
where a >= min_crop_size).
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
Note:
The keys for bboxes, labels and masks should be paired. That is, \
`gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \
`gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`.
"""
def __init__(self,
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3,
bbox_clip_border=True):
# 1: return ori img
self.min_ious = min_ious
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
self.bbox_clip_border = bbox_clip_border
self.bbox2label = {
'gt_bboxes': 'gt_labels',
'gt_bboxes_ignore': 'gt_labels_ignore'
}
self.bbox2mask = {
'gt_bboxes': 'gt_masks',
'gt_bboxes_ignore': 'gt_masks_ignore'
}
def __call__(self, results):
"""Call function to crop images and bounding boxes with minimum IoU
constraint.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images and bounding boxes cropped, \
'img_shape' key is updated.
"""
if 'img_fields' in results:
assert results['img_fields'] == ['img'], \
'Only single img_fields is allowed'
img = results['img']
assert 'bbox_fields' in results
boxes = [results[key] for key in results['bbox_fields']]
boxes = np.concatenate(boxes, 0)
h, w, c = img.shape
while True:
mode = random.choice(self.sample_mode)
self.mode = mode
if mode == 1:
return results
min_iou = mode
for i in range(50):
new_w = random.uniform(self.min_crop_size * w, w)
new_h = random.uniform(self.min_crop_size * h, h)
# h / w in [0.5, 2]
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = random.uniform(w - new_w)
top = random.uniform(h - new_h)
patch = np.array(
(int(left), int(top), int(left + new_w), int(top + new_h)))
# Line or point crop is not allowed
if patch[2] == patch[0] or patch[3] == patch[1]:
continue
overlaps = bbox_overlaps(
patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
if len(overlaps) > 0 and overlaps.min() < min_iou:
continue
# center of boxes should inside the crop img
# only adjust boxes and instance masks when the gt is not empty
if len(overlaps) > 0:
# adjust boxes
def is_center_of_bboxes_in_patch(boxes, patch):
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = ((center[:, 0] > patch[0]) *
(center[:, 1] > patch[1]) *
(center[:, 0] < patch[2]) *
(center[:, 1] < patch[3]))
return mask
mask = is_center_of_bboxes_in_patch(boxes, patch)
if not mask.any():
continue
for key in results.get('bbox_fields', []):
boxes = results[key].copy()
mask = is_center_of_bboxes_in_patch(boxes, patch)
boxes = boxes[mask]
if self.bbox_clip_border:
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
boxes -= np.tile(patch[:2], 2)
results[key] = boxes
# labels
label_key = self.bbox2label.get(key)
if label_key in results:
results[label_key] = results[label_key][mask]
# mask fields
mask_key = self.bbox2mask.get(key)
if mask_key in results:
results[mask_key] = results[mask_key][
mask.nonzero()[0]].crop(patch)
# adjust the img no matter whether the gt is empty before crop
img = img[patch[1]:patch[3], patch[0]:patch[2]]
results['img'] = img
results['img_shape'] = img.shape
# seg fields
for key in results.get('seg_fields', []):
results[key] = results[key][patch[1]:patch[3],
patch[0]:patch[2]]
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(min_ious={self.min_ious}, '
repr_str += f'min_crop_size={self.min_crop_size}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@PIPELINES.register_module()
class Corrupt:
"""Corruption augmentation.
Corruption transforms implemented based on
`imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_.
Args:
corruption (str): Corruption name.
severity (int, optional): The severity of corruption. Default: 1.
"""
def __init__(self, corruption, severity=1):
self.corruption = corruption
self.severity = severity
def __call__(self, results):
"""Call function to corrupt image.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images corrupted.
"""
if corrupt is None:
raise RuntimeError('imagecorruptions is not installed')
if 'img_fields' in results:
assert results['img_fields'] == ['img'], \
'Only single img_fields is allowed'
results['img'] = corrupt(
results['img'].astype(np.uint8),
corruption_name=self.corruption,
severity=self.severity)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(corruption={self.corruption}, '
repr_str += f'severity={self.severity})'
return repr_str
@PIPELINES.register_module()
class Albu:
"""Albumentation augmentation.
Adds custom transformations from Albumentations library.
Please, visit `https://albumentations.readthedocs.io`
to get more information.
An example of ``transforms`` is as followed:
.. code-block::
[
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=0,
interpolation=1,
p=0.5),
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
Args:
transforms (list[dict]): A list of albu transformations
bbox_params (dict): Bbox_params for albumentation `Compose`
keymap (dict): Contains {'input key':'albumentation-style key'}
skip_img_without_anno (bool): Whether to skip the image if no ann left
after aug
"""
def __init__(self,
transforms,
bbox_params=None,
keymap=None,
update_pad_shape=False,
skip_img_without_anno=False):
if Compose is None:
raise RuntimeError('albumentations is not installed')
# Args will be modified later, copying it will be safer
transforms = copy.deepcopy(transforms)
if bbox_params is not None:
bbox_params = copy.deepcopy(bbox_params)
if keymap is not None:
keymap = copy.deepcopy(keymap)
self.transforms = transforms
self.filter_lost_elements = False
self.update_pad_shape = update_pad_shape
self.skip_img_without_anno = skip_img_without_anno
# A simple workaround to remove masks without boxes
if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params
and 'filter_lost_elements' in bbox_params):
self.filter_lost_elements = True
self.origin_label_fields = bbox_params['label_fields']
bbox_params['label_fields'] = ['idx_mapper']
del bbox_params['filter_lost_elements']
self.bbox_params = (
self.albu_builder(bbox_params) if bbox_params else None)
self.aug = Compose([self.albu_builder(t) for t in self.transforms],
bbox_params=self.bbox_params)
if not keymap:
self.keymap_to_albu = {
'img': 'image',
'gt_masks': 'masks',
'gt_bboxes': 'bboxes'
}
else:
self.keymap_to_albu = keymap
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
def albu_builder(self, cfg):
"""Import a module from albumentations.
It inherits some of :func:`build_from_cfg` logic.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj: The constructed object.
"""
assert isinstance(cfg, dict) and 'type' in cfg
args = cfg.copy()
obj_type = args.pop('type')
if mmcv.is_str(obj_type):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
obj_cls = getattr(albumentations, obj_type)
elif inspect.isclass(obj_type):
obj_cls = obj_type
else:
raise TypeError(
f'type must be a str or valid type, but got {type(obj_type)}')
if 'transforms' in args:
args['transforms'] = [
self.albu_builder(transform)
for transform in args['transforms']
]
return obj_cls(**args)
@staticmethod
def mapper(d, keymap):
"""Dictionary mapper. Renames keys according to keymap provided.
Args:
d (dict): old dict
keymap (dict): {'old_key':'new_key'}
Returns:
dict: new dict.
"""
updated_dict = {}
for k, v in zip(d.keys(), d.values()):
new_k = keymap.get(k, k)
updated_dict[new_k] = d[k]
return updated_dict
def __call__(self, results):
# dict to albumentations format
results = self.mapper(results, self.keymap_to_albu)
# TODO: add bbox_fields
if 'bboxes' in results:
# to list of boxes
if isinstance(results['bboxes'], np.ndarray):
results['bboxes'] = [x for x in results['bboxes']]
# add pseudo-field for filtration
if self.filter_lost_elements:
results['idx_mapper'] = np.arange(len(results['bboxes']))
# TODO: Support mask structure in albu
if 'masks' in results:
if isinstance(results['masks'], PolygonMasks):
raise NotImplementedError(
'Albu only supports BitMap masks now')
ori_masks = results['masks']
if albumentations.__version__ < '0.5':
results['masks'] = results['masks'].masks
else:
results['masks'] = [mask for mask in results['masks'].masks]
results = self.aug(**results)
if 'bboxes' in results:
if isinstance(results['bboxes'], list):
results['bboxes'] = np.array(
results['bboxes'], dtype=np.float32)
results['bboxes'] = results['bboxes'].reshape(-1, 4)
# filter label_fields
if self.filter_lost_elements:
for label in self.origin_label_fields:
results[label] = np.array(
[results[label][i] for i in results['idx_mapper']])
if 'masks' in results:
results['masks'] = np.array(
[results['masks'][i] for i in results['idx_mapper']])
results['masks'] = ori_masks.__class__(
results['masks'], results['image'].shape[0],
results['image'].shape[1])
if (not len(results['idx_mapper'])
and self.skip_img_without_anno):
return None
if 'gt_labels' in results:
if isinstance(results['gt_labels'], list):
results['gt_labels'] = np.array(results['gt_labels'])
results['gt_labels'] = results['gt_labels'].astype(np.int64)
# back to the original format
results = self.mapper(results, self.keymap_back)
# update final shape
if self.update_pad_shape:
results['pad_shape'] = results['img'].shape
return results
def __repr__(self):
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
return repr_str
@PIPELINES.register_module()
class RandomCenterCropPad:
"""Random center crop and random around padding for CornerNet.
This operation generates randomly cropped image from the original image and
pads it simultaneously. Different from :class:`RandomCrop`, the output
shape may not equal to ``crop_size`` strictly. We choose a random value
from ``ratios`` and the output shape could be larger or smaller than
``crop_size``. The padding operation is also different from :class:`Pad`,
here we use around padding instead of right-bottom padding.
The relation between output image (padding image) and original image:
.. code:: text
output image
+----------------------------+
| padded area |
+------|----------------------------|----------+
| | cropped area | |
| | +---------------+ | |
| | | . center | | | original image
| | | range | | |
| | +---------------+ | |
+------|----------------------------|----------+
| padded area |
+----------------------------+
There are 5 main areas in the figure:
- output image: output image of this operation, also called padding
image in following instruction.
- original image: input image of this operation.
- padded area: non-intersect area of output image and original image.
- cropped area: the overlap of output image and original image.
- center range: a smaller area where random center chosen from.
center range is computed by ``border`` and original image's shape
to avoid our random center is too close to original image's border.
Also this operation act differently in train and test mode, the summary
pipeline is listed below.
Train pipeline:
1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image
will be ``random_ratio * crop_size``.
2. Choose a ``random_center`` in center range.
3. Generate padding image with center matches the ``random_center``.
4. Initialize the padding image with pixel value equals to ``mean``.
5. Copy the cropped area to padding image.
6. Refine annotations.
Test pipeline:
1. Compute output shape according to ``test_pad_mode``.
2. Generate padding image with center matches the original image
center.
3. Initialize the padding image with pixel value equals to ``mean``.
4. Copy the ``cropped area`` to padding image.
Args:
crop_size (tuple | None): expected size after crop, final size will
computed according to ratio. Requires (h, w) in train mode, and
None in test mode.
ratios (tuple): random select a ratio from tuple and crop image to
(crop_size[0] * ratio) * (crop_size[1] * ratio).
Only available in train mode.
border (int): max distance from center select area to image border.
Only available in train mode.
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB.
test_mode (bool): whether involve random variables in transform.
In train mode, crop_size is fixed, center coords and ratio is
random selected from predefined lists. In test mode, crop_size
is image's original shape, center coords and ratio is fixed.
test_pad_mode (tuple): padding method and padding shape value, only
available in test mode. Default is using 'logical_or' with
127 as padding shape value.
- 'logical_or': final_shape = input_shape | padding_shape_value
- 'size_divisor': final_shape = int(
ceil(input_shape / padding_shape_value) * padding_shape_value)
test_pad_add_pix (int): Extra padding pixel in test mode. Default 0.
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
"""
def __init__(self,
crop_size=None,
ratios=(0.9, 1.0, 1.1),
border=128,
mean=None,
std=None,
to_rgb=None,
test_mode=False,
test_pad_mode=('logical_or', 127),
test_pad_add_pix=0,
bbox_clip_border=True):
if test_mode:
assert crop_size is None, 'crop_size must be None in test mode'
assert ratios is None, 'ratios must be None in test mode'
assert border is None, 'border must be None in test mode'
assert isinstance(test_pad_mode, (list, tuple))
assert test_pad_mode[0] in ['logical_or', 'size_divisor']
else:
assert isinstance(crop_size, (list, tuple))
assert crop_size[0] > 0 and crop_size[1] > 0, (
'crop_size must > 0 in train mode')
assert isinstance(ratios, (list, tuple))
assert test_pad_mode is None, (
'test_pad_mode must be None in train mode')
self.crop_size = crop_size
self.ratios = ratios
self.border = border
# We do not set default value to mean, std and to_rgb because these
# hyper-parameters are easy to forget but could affect the performance.
# Please use the same setting as Normalize for performance assurance.
assert mean is not None and std is not None and to_rgb is not None
self.to_rgb = to_rgb
self.input_mean = mean
self.input_std = std
if to_rgb:
self.mean = mean[::-1]
self.std = std[::-1]
else:
self.mean = mean
self.std = std
self.test_mode = test_mode
self.test_pad_mode = test_pad_mode
self.test_pad_add_pix = test_pad_add_pix
self.bbox_clip_border = bbox_clip_border
def _get_border(self, border, size):
"""Get final border for the target size.
This function generates a ``final_border`` according to image's shape.
The area between ``final_border`` and ``size - final_border`` is the
``center range``. We randomly choose center from the ``center range``
to avoid our random center is too close to original image's border.
Also ``center range`` should be larger than 0.
Args:
border (int): The initial border, default is 128.
size (int): The width or height of original image.
Returns:
int: The final border.
"""
k = 2 * border / size
i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k)))
return border // i
def _filter_boxes(self, patch, boxes):
"""Check whether the center of each box is in the patch.
Args:
patch (list[int]): The cropped area, [left, top, right, bottom].
boxes (numpy array, (N x 4)): Ground truth boxes.
Returns:
mask (numpy array, (N,)): Each box is inside or outside the patch.
"""
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (
center[:, 0] < patch[2]) * (
center[:, 1] < patch[3])
return mask
def _crop_image_and_paste(self, image, center, size):
"""Crop image with a given center and size, then paste the cropped
image to a blank image with two centers align.
This function is equivalent to generating a blank image with ``size``
as its shape. Then cover it on the original image with two centers (
the center of blank image and the random center of original image)
aligned. The overlap area is paste from the original image and the
outside area is filled with ``mean pixel``.
Args:
image (np array, H x W x C): Original image.
center (list[int]): Target crop center coord.
size (list[int]): Target crop size. [target_h, target_w]
Returns:
cropped_img (np array, target_h x target_w x C): Cropped image.
border (np array, 4): The distance of four border of
``cropped_img`` to the original image area, [top, bottom,
left, right]
patch (list[int]): The cropped area, [left, top, right, bottom].
"""
center_y, center_x = center
target_h, target_w = size
img_h, img_w, img_c = image.shape
x0 = max(0, center_x - target_w // 2)
x1 = min(center_x + target_w // 2, img_w)
y0 = max(0, center_y - target_h // 2)
y1 = min(center_y + target_h // 2, img_h)
patch = np.array((int(x0), int(y0), int(x1), int(y1)))
left, right = center_x - x0, x1 - center_x
top, bottom = center_y - y0, y1 - center_y
cropped_center_y, cropped_center_x = target_h // 2, target_w // 2
cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype)
for i in range(img_c):
cropped_img[:, :, i] += self.mean[i]
y_slice = slice(cropped_center_y - top, cropped_center_y + bottom)
x_slice = slice(cropped_center_x - left, cropped_center_x + right)
cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :]
border = np.array([
cropped_center_y - top, cropped_center_y + bottom,
cropped_center_x - left, cropped_center_x + right
],
dtype=np.float32)
return cropped_img, border, patch
def _train_aug(self, results):
"""Random crop and around padding the original image.
Args:
results (dict): Image infomations in the augment pipeline.
Returns:
results (dict): The updated dict.
"""
img = results['img']
h, w, c = img.shape
boxes = results['gt_bboxes']
while True:
scale = random.choice(self.ratios)
new_h = int(self.crop_size[0] * scale)
new_w = int(self.crop_size[1] * scale)
h_border = self._get_border(self.border, h)
w_border = self._get_border(self.border, w)
for i in range(50):
center_x = random.randint(low=w_border, high=w - w_border)
center_y = random.randint(low=h_border, high=h - h_border)
cropped_img, border, patch = self._crop_image_and_paste(
img, [center_y, center_x], [new_h, new_w])
mask = self._filter_boxes(patch, boxes)
# if image do not have valid bbox, any crop patch is valid.
if not mask.any() and len(boxes) > 0:
continue
results['img'] = cropped_img
results['img_shape'] = cropped_img.shape
results['pad_shape'] = cropped_img.shape
x0, y0, x1, y1 = patch
left_w, top_h = center_x - x0, center_y - y0
cropped_center_x, cropped_center_y = new_w // 2, new_h // 2
# crop bboxes accordingly and clip to the image boundary
for key in results.get('bbox_fields', []):
mask = self._filter_boxes(patch, results[key])
bboxes = results[key][mask]
bboxes[:, 0:4:2] += cropped_center_x - left_w - x0
bboxes[:, 1:4:2] += cropped_center_y - top_h - y0
if self.bbox_clip_border:
bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w)
bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h)
keep = (bboxes[:, 2] > bboxes[:, 0]) & (
bboxes[:, 3] > bboxes[:, 1])
bboxes = bboxes[keep]
results[key] = bboxes
if key in ['gt_bboxes']:
if 'gt_labels' in results:
labels = results['gt_labels'][mask]
labels = labels[keep]
results['gt_labels'] = labels
if 'gt_masks' in results:
raise NotImplementedError(
'RandomCenterCropPad only supports bbox.')
# crop semantic seg
for key in results.get('seg_fields', []):
raise NotImplementedError(
'RandomCenterCropPad only supports bbox.')
return results
def _test_aug(self, results):
"""Around padding the original image without cropping.
The padding mode and value are from ``test_pad_mode``.
Args:
results (dict): Image infomations in the augment pipeline.
Returns:
results (dict): The updated dict.
"""
img = results['img']
h, w, c = img.shape
results['img_shape'] = img.shape
if self.test_pad_mode[0] in ['logical_or']:
# self.test_pad_add_pix is only used for centernet
target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix
target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix
elif self.test_pad_mode[0] in ['size_divisor']:
divisor = self.test_pad_mode[1]
target_h = int(np.ceil(h / divisor)) * divisor
target_w = int(np.ceil(w / divisor)) * divisor
else:
raise NotImplementedError(
'RandomCenterCropPad only support two testing pad mode:'
'logical-or and size_divisor.')
cropped_img, border, _ = self._crop_image_and_paste(
img, [h // 2, w // 2], [target_h, target_w])
results['img'] = cropped_img
results['pad_shape'] = cropped_img.shape
results['border'] = border
return results
def __call__(self, results):
img = results['img']
assert img.dtype == np.float32, (
'RandomCenterCropPad needs the input image of dtype np.float32,'
' please set "to_float32=True" in "LoadImageFromFile" pipeline')
h, w, c = img.shape
assert c == len(self.mean)
if self.test_mode:
return self._test_aug(results)
else:
return self._train_aug(results)
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(crop_size={self.crop_size}, '
repr_str += f'ratios={self.ratios}, '
repr_str += f'border={self.border}, '
repr_str += f'mean={self.input_mean}, '
repr_str += f'std={self.input_std}, '
repr_str += f'to_rgb={self.to_rgb}, '
repr_str += f'test_mode={self.test_mode}, '
repr_str += f'test_pad_mode={self.test_pad_mode}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@PIPELINES.register_module()
class CutOut:
"""CutOut operation.
Randomly drop some regions of image used in
`Cutout <https://arxiv.org/abs/1708.04552>`_.
Args:
n_holes (int | tuple[int, int]): Number of regions to be dropped.
If it is given as a list, number of holes will be randomly
selected from the closed interval [`n_holes[0]`, `n_holes[1]`].
cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate
shape of dropped regions. It can be `tuple[int, int]` to use a
fixed cutout shape, or `list[tuple[int, int]]` to randomly choose
shape from the list.
cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The
candidate ratio of dropped regions. It can be `tuple[float, float]`
to use a fixed ratio or `list[tuple[float, float]]` to randomly
choose ratio from the list. Please note that `cutout_shape`
and `cutout_ratio` cannot be both given at the same time.
fill_in (tuple[float, float, float] | tuple[int, int, int]): The value
of pixel to fill in the dropped regions. Default: (0, 0, 0).
"""
def __init__(self,
n_holes,
cutout_shape=None,
cutout_ratio=None,
fill_in=(0, 0, 0)):
assert (cutout_shape is None) ^ (cutout_ratio is None), \
'Either cutout_shape or cutout_ratio should be specified.'
assert (isinstance(cutout_shape, (list, tuple))
or isinstance(cutout_ratio, (list, tuple)))
if isinstance(n_holes, tuple):
assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
else:
n_holes = (n_holes, n_holes)
self.n_holes = n_holes
self.fill_in = fill_in
self.with_ratio = cutout_ratio is not None
self.candidates = cutout_ratio if self.with_ratio else cutout_shape
if not isinstance(self.candidates, list):
self.candidates = [self.candidates]
def __call__(self, results):
"""Call function to drop some regions of image."""
h, w, c = results['img'].shape
n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
for _ in range(n_holes):
x1 = np.random.randint(0, w)
y1 = np.random.randint(0, h)
index = np.random.randint(0, len(self.candidates))
if not self.with_ratio:
cutout_w, cutout_h = self.candidates[index]
else:
cutout_w = int(self.candidates[index][0] * w)
cutout_h = int(self.candidates[index][1] * h)
x2 = np.clip(x1 + cutout_w, 0, w)
y2 = np.clip(y1 + cutout_h, 0, h)
results['img'][y1:y2, x1:x2, :] = self.fill_in
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(n_holes={self.n_holes}, '
repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
else f'cutout_shape={self.candidates}, ')
repr_str += f'fill_in={self.fill_in})'
return repr_str
@PIPELINES.register_module()
class Mosaic:
"""Mosaic augmentation.
Given 4 images, mosaic transform combines them into
one output image. The output image is composed of the parts from each sub-
image.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | pad |
| +-----------+ |
| | | |
| | image1 |--------+ |
| | | | |
| | | image2 | |
center_y |----+-------------+-----------|
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
The mosaic transform steps are as follows:
1. Choose the mosaic center as the intersections of 4 images
2. Get the left top image according to the index, and randomly
sample another 3 images from the custom dataset.
3. Sub image will be cropped if image is larger than mosaic patch
Args:
img_scale (Sequence[int]): Image size after mosaic pipeline of single
image. The shape order should be (height, width).
Default to (640, 640).
center_ratio_range (Sequence[float]): Center ratio range of mosaic
output. Default to (0.5, 1.5).
min_bbox_size (int | float): The minimum pixel for filtering
invalid bboxes after the mosaic pipeline. Default to 0.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool): Whether to skip filtering rules. If it
is True, the filter rule will not be applied, and the
`min_bbox_size` is invalid. Default to True.
pad_val (int): Pad value. Default to 114.
prob (float): Probability of applying this transformation.
Default to 1.0.
"""
def __init__(self,
img_scale=(640, 640),
center_ratio_range=(0.5, 1.5),
min_bbox_size=0,
bbox_clip_border=True,
skip_filter=True,
pad_val=114,
prob=1.0):
assert isinstance(img_scale, tuple)
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\
f'got {prob}.'
log_img_scale(img_scale, skip_square=True)
self.img_scale = img_scale
self.center_ratio_range = center_ratio_range
self.min_bbox_size = min_bbox_size
self.bbox_clip_border = bbox_clip_border
self.skip_filter = skip_filter
self.pad_val = pad_val
self.prob = prob
def __call__(self, results):
"""Call function to make a mosaic of image.
Args:
results (dict): Result dict.
Returns:
dict: Result dict with mosaic transformed.
"""
if random.uniform(0, 1) > self.prob:
return results
results = self._mosaic_transform(results)
return results
def get_indexes(self, dataset):
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(dataset)) for _ in range(3)]
return indexes
def _mosaic_transform(self, results):
"""Mosaic transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert 'mix_results' in results
mosaic_labels = []
mosaic_bboxes = []
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full(
(int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)),
self.pad_val,
dtype=results['img'].dtype)
# mosaic center x, y
center_x = int(
random.uniform(*self.center_ratio_range) * self.img_scale[1])
center_y = int(
random.uniform(*self.center_ratio_range) * self.img_scale[0])
center_position = (center_x, center_y)
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
for i, loc in enumerate(loc_strs):
if loc == 'top_left':
results_patch = copy.deepcopy(results)
else:
results_patch = copy.deepcopy(results['mix_results'][i - 1])
img_i = results_patch['img']
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(self.img_scale[0] / h_i,
self.img_scale[1] / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch['gt_bboxes']
gt_labels_i = results_patch['gt_labels']
if gt_bboxes_i.shape[0] > 0:
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i[:, 0::2] = \
scale_ratio_i * gt_bboxes_i[:, 0::2] + padw
gt_bboxes_i[:, 1::2] = \
scale_ratio_i * gt_bboxes_i[:, 1::2] + padh
mosaic_bboxes.append(gt_bboxes_i)
mosaic_labels.append(gt_labels_i)
if len(mosaic_labels) > 0:
mosaic_bboxes = np.concatenate(mosaic_bboxes, 0)
mosaic_labels = np.concatenate(mosaic_labels, 0)
if self.bbox_clip_border:
mosaic_bboxes[:, 0::2] = np.clip(mosaic_bboxes[:, 0::2], 0,
2 * self.img_scale[1])
mosaic_bboxes[:, 1::2] = np.clip(mosaic_bboxes[:, 1::2], 0,
2 * self.img_scale[0])
if not self.skip_filter:
mosaic_bboxes, mosaic_labels = \
self._filter_box_candidates(mosaic_bboxes, mosaic_labels)
# remove outside bboxes
inside_inds = find_inside_bboxes(mosaic_bboxes, 2 * self.img_scale[0],
2 * self.img_scale[1])
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_labels = mosaic_labels[inside_inds]
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape
results['gt_bboxes'] = mosaic_bboxes
results['gt_labels'] = mosaic_labels
return results
def _mosaic_combine(self, loc, center_position_xy, img_shape_wh):
"""Calculate global coordinate of mosaic image and local coordinate of
cropped sub-image.
Args:
loc (str): Index for the sub-image, loc in ('top_left',
'top_right', 'bottom_left', 'bottom_right').
center_position_xy (Sequence[float]): Mixing center for 4 images,
(x, y).
img_shape_wh (Sequence[int]): Width and height of sub-image
Returns:
tuple[tuple[float]]: Corresponding coordinate of pasting and
cropping
- paste_coord (tuple): paste corner coordinate in mosaic image.
- crop_coord (tuple): crop corner coordinate in mosaic image.
"""
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
if loc == 'top_left':
# index0 to top left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
max(center_position_xy[1] - img_shape_wh[1], 0), \
center_position_xy[0], \
center_position_xy[1]
crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - (
y2 - y1), img_shape_wh[0], img_shape_wh[1]
elif loc == 'top_right':
# index1 to top right part of image
x1, y1, x2, y2 = center_position_xy[0], \
max(center_position_xy[1] - img_shape_wh[1], 0), \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[1] * 2), \
center_position_xy[1]
crop_coord = 0, img_shape_wh[1] - (y2 - y1), min(
img_shape_wh[0], x2 - x1), img_shape_wh[1]
elif loc == 'bottom_left':
# index2 to bottom left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
center_position_xy[1], \
center_position_xy[0], \
min(self.img_scale[0] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min(
y2 - y1, img_shape_wh[1])
else:
# index3 to bottom right part of image
x1, y1, x2, y2 = center_position_xy[0], \
center_position_xy[1], \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[1] * 2), \
min(self.img_scale[0] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = 0, 0, min(img_shape_wh[0],
x2 - x1), min(y2 - y1, img_shape_wh[1])
paste_coord = x1, y1, x2, y2
return paste_coord, crop_coord
def _filter_box_candidates(self, bboxes, labels):
"""Filter out bboxes too small after Mosaic."""
bbox_w = bboxes[:, 2] - bboxes[:, 0]
bbox_h = bboxes[:, 3] - bboxes[:, 1]
valid_inds = (bbox_w > self.min_bbox_size) & \
(bbox_h > self.min_bbox_size)
valid_inds = np.nonzero(valid_inds)[0]
return bboxes[valid_inds], labels[valid_inds]
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'img_scale={self.img_scale}, '
repr_str += f'center_ratio_range={self.center_ratio_range}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'min_bbox_size={self.min_bbox_size}, '
repr_str += f'skip_filter={self.skip_filter})'
return repr_str
@PIPELINES.register_module()
class MixUp:
"""MixUp data augmentation.
.. code:: text
mixup transform
+------------------------------+
| mixup image | |
| +--------|--------+ |
| | | | |
|---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| |-----------------+ |
| pad |
+------------------------------+
The mixup transform steps are as follows:
1. Another random image is picked by dataset and embedded in
the top left patch(after padding and resizing)
2. The target of mixup transform is the weighted average of mixup
image and origin image.
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (height, width). Default: (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Default: (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Default: 0.5.
pad_val (int): Pad value. Default: 114.
max_iters (int): The maximum number of iterations. If the number of
iterations is greater than `max_iters`, but gt_bbox is still
empty, then the iteration is terminated. Default: 15.
min_bbox_size (float): Width and height threshold to filter bboxes.
If the height or width of a box is smaller than this value, it
will be removed. Default: 5.
min_area_ratio (float): Threshold of area ratio between
original bboxes and wrapped bboxes. If smaller than this value,
the box will be removed. Default: 0.2.
max_aspect_ratio (float): Aspect ratio of width and height
threshold to filter bboxes. If max(h/w, w/h) larger than this
value, the box will be removed. Default: 20.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool): Whether to skip filtering rules. If it
is True, the filter rule will not be applied, and the
`min_bbox_size` and `min_area_ratio` and `max_aspect_ratio`
is invalid. Default to True.
"""
def __init__(self,
img_scale=(640, 640),
ratio_range=(0.5, 1.5),
flip_ratio=0.5,
pad_val=114,
max_iters=15,
min_bbox_size=5,
min_area_ratio=0.2,
max_aspect_ratio=20,
bbox_clip_border=True,
skip_filter=True):
assert isinstance(img_scale, tuple)
log_img_scale(img_scale, skip_square=True)
self.dynamic_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.max_iters = max_iters
self.min_bbox_size = min_bbox_size
self.min_area_ratio = min_area_ratio
self.max_aspect_ratio = max_aspect_ratio
self.bbox_clip_border = bbox_clip_border
self.skip_filter = skip_filter
def __call__(self, results):
"""Call function to make a mixup of image.
Args:
results (dict): Result dict.
Returns:
dict: Result dict with mixup transformed.
"""
results = self._mixup_transform(results)
return results
def get_indexes(self, dataset):
"""Call function to collect indexes.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: indexes.
"""
for i in range(self.max_iters):
index = random.randint(0, len(dataset))
gt_bboxes_i = dataset.get_ann_info(index)['bboxes']
if len(gt_bboxes_i) != 0:
break
return index
def _mixup_transform(self, results):
"""MixUp transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert 'mix_results' in results
assert len(
results['mix_results']) == 1, 'MixUp only support 2 images now !'
if results['mix_results'][0]['gt_bboxes'].shape[0] == 0:
# empty bbox
return results
retrieve_results = results['mix_results'][0]
retrieve_img = retrieve_results['img']
jit_factor = random.uniform(*self.ratio_range)
is_filp = random.uniform(0, 1) < self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = np.ones(
(self.dynamic_scale[0], self.dynamic_scale[1], 3),
dtype=retrieve_img.dtype) * self.pad_val
else:
out_img = np.ones(
self.dynamic_scale, dtype=retrieve_img.dtype) * self.pad_val
# 1. keep_ratio resize
scale_ratio = min(self.dynamic_scale[0] / retrieve_img.shape[0],
self.dynamic_scale[1] / retrieve_img.shape[1])
retrieve_img = mmcv.imresize(
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio)))
# 2. paste
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# 4. flip
if is_filp:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results['img']
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = np.zeros(
(max(origin_h, target_h), max(origin_w,
target_w), 3)).astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[y_offset:y_offset + target_h,
x_offset:x_offset + target_w]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes[:, 0::2] = retrieve_gt_bboxes[:, 0::2] * scale_ratio
retrieve_gt_bboxes[:, 1::2] = retrieve_gt_bboxes[:, 1::2] * scale_ratio
if self.bbox_clip_border:
retrieve_gt_bboxes[:, 0::2] = np.clip(retrieve_gt_bboxes[:, 0::2],
0, origin_w)
retrieve_gt_bboxes[:, 1::2] = np.clip(retrieve_gt_bboxes[:, 1::2],
0, origin_h)
if is_filp:
retrieve_gt_bboxes[:, 0::2] = (
origin_w - retrieve_gt_bboxes[:, 0::2][:, ::-1])
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.copy()
cp_retrieve_gt_bboxes[:, 0::2] = \
cp_retrieve_gt_bboxes[:, 0::2] - x_offset
cp_retrieve_gt_bboxes[:, 1::2] = \
cp_retrieve_gt_bboxes[:, 1::2] - y_offset
if self.bbox_clip_border:
cp_retrieve_gt_bboxes[:, 0::2] = np.clip(
cp_retrieve_gt_bboxes[:, 0::2], 0, target_w)
cp_retrieve_gt_bboxes[:, 1::2] = np.clip(
cp_retrieve_gt_bboxes[:, 1::2], 0, target_h)
# 8. mix up
ori_img = ori_img.astype(np.float32)
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)
retrieve_gt_labels = retrieve_results['gt_labels']
if not self.skip_filter:
keep_list = self._filter_box_candidates(retrieve_gt_bboxes.T,
cp_retrieve_gt_bboxes.T)
retrieve_gt_labels = retrieve_gt_labels[keep_list]
cp_retrieve_gt_bboxes = cp_retrieve_gt_bboxes[keep_list]
mixup_gt_bboxes = np.concatenate(
(results['gt_bboxes'], cp_retrieve_gt_bboxes), axis=0)
mixup_gt_labels = np.concatenate(
(results['gt_labels'], retrieve_gt_labels), axis=0)
# remove outside bbox
inside_inds = find_inside_bboxes(mixup_gt_bboxes, target_h, target_w)
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_labels = mixup_gt_labels[inside_inds]
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_labels'] = mixup_gt_labels
return results
def _filter_box_candidates(self, bbox1, bbox2):
"""Compute candidate boxes which include following 5 things:
bbox1 before augment, bbox2 after augment, min_bbox_size (pixels),
min_area_ratio, max_aspect_ratio.
"""
w1, h1 = bbox1[2] - bbox1[0], bbox1[3] - bbox1[1]
w2, h2 = bbox2[2] - bbox2[0], bbox2[3] - bbox2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))
return ((w2 > self.min_bbox_size)
& (h2 > self.min_bbox_size)
& (w2 * h2 / (w1 * h1 + 1e-16) > self.min_area_ratio)
& (ar < self.max_aspect_ratio))
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'dynamic_scale={self.dynamic_scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'flip_ratio={self.flip_ratio}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'max_iters={self.max_iters}, '
repr_str += f'min_bbox_size={self.min_bbox_size}, '
repr_str += f'min_area_ratio={self.min_area_ratio}, '
repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, '
repr_str += f'skip_filter={self.skip_filter})'
return repr_str
@PIPELINES.register_module()
class RandomAffine:
"""Random affine transform data augmentation.
This operation randomly generates affine transform matrix which including
rotation, translation, shear and scaling transforms.
Args:
max_rotate_degree (float): Maximum degrees of rotation transform.
Default: 10.
max_translate_ratio (float): Maximum ratio of translation.
Default: 0.1.
scaling_ratio_range (tuple[float]): Min and max ratio of
scaling transform. Default: (0.5, 1.5).
max_shear_degree (float): Maximum degrees of shear
transform. Default: 2.
border (tuple[int]): Distance from height and width sides of input
image to adjust output shape. Only used in mosaic dataset.
Default: (0, 0).
border_val (tuple[int]): Border padding values of 3 channels.
Default: (114, 114, 114).
min_bbox_size (float): Width and height threshold to filter bboxes.
If the height or width of a box is smaller than this value, it
will be removed. Default: 2.
min_area_ratio (float): Threshold of area ratio between
original bboxes and wrapped bboxes. If smaller than this value,
the box will be removed. Default: 0.2.
max_aspect_ratio (float): Aspect ratio of width and height
threshold to filter bboxes. If max(h/w, w/h) larger than this
value, the box will be removed.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
skip_filter (bool): Whether to skip filtering rules. If it
is True, the filter rule will not be applied, and the
`min_bbox_size` and `min_area_ratio` and `max_aspect_ratio`
is invalid. Default to True.
"""
def __init__(self,
max_rotate_degree=10.0,
max_translate_ratio=0.1,
scaling_ratio_range=(0.5, 1.5),
max_shear_degree=2.0,
border=(0, 0),
border_val=(114, 114, 114),
min_bbox_size=2,
min_area_ratio=0.2,
max_aspect_ratio=20,
bbox_clip_border=True,
skip_filter=True):
assert 0 <= max_translate_ratio <= 1
assert scaling_ratio_range[0] <= scaling_ratio_range[1]
assert scaling_ratio_range[0] > 0
self.max_rotate_degree = max_rotate_degree
self.max_translate_ratio = max_translate_ratio
self.scaling_ratio_range = scaling_ratio_range
self.max_shear_degree = max_shear_degree
self.border = border
self.border_val = border_val
self.min_bbox_size = min_bbox_size
self.min_area_ratio = min_area_ratio
self.max_aspect_ratio = max_aspect_ratio
self.bbox_clip_border = bbox_clip_border
self.skip_filter = skip_filter
def __call__(self, results):
img = results['img']
height = img.shape[0] + self.border[0] * 2
width = img.shape[1] + self.border[1] * 2
# Rotation
rotation_degree = random.uniform(-self.max_rotate_degree,
self.max_rotate_degree)
rotation_matrix = self._get_rotation_matrix(rotation_degree)
# Scaling
scaling_ratio = random.uniform(self.scaling_ratio_range[0],
self.scaling_ratio_range[1])
scaling_matrix = self._get_scaling_matrix(scaling_ratio)
# Shear
x_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
y_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
shear_matrix = self._get_shear_matrix(x_degree, y_degree)
# Translation
trans_x = random.uniform(-self.max_translate_ratio,
self.max_translate_ratio) * width
trans_y = random.uniform(-self.max_translate_ratio,
self.max_translate_ratio) * height
translate_matrix = self._get_translation_matrix(trans_x, trans_y)
warp_matrix = (
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix)
img = cv2.warpPerspective(
img,
warp_matrix,
dsize=(width, height),
borderValue=self.border_val)
results['img'] = img
results['img_shape'] = img.shape
for key in results.get('bbox_fields', []):
bboxes = results[key]
num_bboxes = len(bboxes)
if num_bboxes:
# homogeneous coordinates
xs = bboxes[:, [0, 0, 2, 2]].reshape(num_bboxes * 4)
ys = bboxes[:, [1, 3, 3, 1]].reshape(num_bboxes * 4)
ones = np.ones_like(xs)
points = np.vstack([xs, ys, ones])
warp_points = warp_matrix @ points
warp_points = warp_points[:2] / warp_points[2]
xs = warp_points[0].reshape(num_bboxes, 4)
ys = warp_points[1].reshape(num_bboxes, 4)
warp_bboxes = np.vstack(
(xs.min(1), ys.min(1), xs.max(1), ys.max(1))).T
if self.bbox_clip_border:
warp_bboxes[:, [0, 2]] = \
warp_bboxes[:, [0, 2]].clip(0, width)
warp_bboxes[:, [1, 3]] = \
warp_bboxes[:, [1, 3]].clip(0, height)
# remove outside bbox
valid_index = find_inside_bboxes(warp_bboxes, height, width)
if not self.skip_filter:
# filter bboxes
filter_index = self.filter_gt_bboxes(
bboxes * scaling_ratio, warp_bboxes)
valid_index = valid_index & filter_index
results[key] = warp_bboxes[valid_index]
if key in ['gt_bboxes']:
if 'gt_labels' in results:
results['gt_labels'] = results['gt_labels'][
valid_index]
if 'gt_masks' in results:
raise NotImplementedError(
'RandomAffine only supports bbox.')
return results
def filter_gt_bboxes(self, origin_bboxes, wrapped_bboxes):
origin_w = origin_bboxes[:, 2] - origin_bboxes[:, 0]
origin_h = origin_bboxes[:, 3] - origin_bboxes[:, 1]
wrapped_w = wrapped_bboxes[:, 2] - wrapped_bboxes[:, 0]
wrapped_h = wrapped_bboxes[:, 3] - wrapped_bboxes[:, 1]
aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16),
wrapped_h / (wrapped_w + 1e-16))
wh_valid_idx = (wrapped_w > self.min_bbox_size) & \
(wrapped_h > self.min_bbox_size)
area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h +
1e-16) > self.min_area_ratio
aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio
return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, '
repr_str += f'max_translate_ratio={self.max_translate_ratio}, '
repr_str += f'scaling_ratio={self.scaling_ratio_range}, '
repr_str += f'max_shear_degree={self.max_shear_degree}, '
repr_str += f'border={self.border}, '
repr_str += f'border_val={self.border_val}, '
repr_str += f'min_bbox_size={self.min_bbox_size}, '
repr_str += f'min_area_ratio={self.min_area_ratio}, '
repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, '
repr_str += f'skip_filter={self.skip_filter})'
return repr_str
@staticmethod
def _get_rotation_matrix(rotate_degrees):
radian = math.radians(rotate_degrees)
rotation_matrix = np.array(
[[np.cos(radian), -np.sin(radian), 0.],
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]],
dtype=np.float32)
return rotation_matrix
@staticmethod
def _get_scaling_matrix(scale_ratio):
scaling_matrix = np.array(
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
dtype=np.float32)
return scaling_matrix
@staticmethod
def _get_share_matrix(scale_ratio):
scaling_matrix = np.array(
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
dtype=np.float32)
return scaling_matrix
@staticmethod
def _get_shear_matrix(x_shear_degrees, y_shear_degrees):
x_radian = math.radians(x_shear_degrees)
y_radian = math.radians(y_shear_degrees)
shear_matrix = np.array([[1, np.tan(x_radian), 0.],
[np.tan(y_radian), 1, 0.], [0., 0., 1.]],
dtype=np.float32)
return shear_matrix
@staticmethod
def _get_translation_matrix(x, y):
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]],
dtype=np.float32)
return translation_matrix
@PIPELINES.register_module()
class YOLOXHSVRandomAug:
"""Apply HSV augmentation to image sequentially. It is referenced from
https://github.com/Megvii-
BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21.
Args:
hue_delta (int): delta of hue. Default: 5.
saturation_delta (int): delta of saturation. Default: 30.
value_delta (int): delat of value. Default: 30.
"""
def __init__(self, hue_delta=5, saturation_delta=30, value_delta=30):
self.hue_delta = hue_delta
self.saturation_delta = saturation_delta
self.value_delta = value_delta
def __call__(self, results):
img = results['img']
hsv_gains = np.random.uniform(-1, 1, 3) * [
self.hue_delta, self.saturation_delta, self.value_delta
]
# random selection of h, s, v
hsv_gains *= np.random.randint(0, 2, 3)
# prevent overflow
hsv_gains = hsv_gains.astype(np.int16)
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16)
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255)
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255)
cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(hue_delta={self.hue_delta}, '
repr_str += f'saturation_delta={self.saturation_delta}, '
repr_str += f'value_delta={self.value_delta})'
return repr_str
@PIPELINES.register_module()
class CopyPaste:
"""Simple Copy-Paste is a Strong Data Augmentation Method for Instance
Segmentation The simple copy-paste transform steps are as follows:
1. The destination image is already resized with aspect ratio kept,
cropped and padded.
2. Randomly select a source image, which is also already resized
with aspect ratio kept, cropped and padded in a similar way
as the destination image.
3. Randomly select some objects from the source image.
4. Paste these source objects to the destination image directly,
due to the source and destination image have the same size.
5. Update object masks of the destination image, for some origin objects
may be occluded.
6. Generate bboxes from the updated destination masks and
filter some objects which are totally occluded, and adjust bboxes
which are partly occluded.
7. Append selected source bboxes, masks, and labels.
Args:
max_num_pasted (int): The maximum number of pasted objects.
Default: 100.
bbox_occluded_thr (int): The threshold of occluded bbox.
Default: 10.
mask_occluded_thr (int): The threshold of occluded mask.
Default: 300.
selected (bool): Whether select objects or not. If select is False,
all objects of the source image will be pasted to the
destination image.
Default: True.
"""
def __init__(
self,
max_num_pasted=100,
bbox_occluded_thr=10,
mask_occluded_thr=300,
selected=True,
):
self.max_num_pasted = max_num_pasted
self.bbox_occluded_thr = bbox_occluded_thr
self.mask_occluded_thr = mask_occluded_thr
self.selected = selected
self.paste_by_box = False
def get_indexes(self, dataset):
"""Call function to collect indexes.s.
Args:
dataset (:obj:`MultiImageMixDataset`): The dataset.
Returns:
list: Indexes.
"""
return random.randint(0, len(dataset))
def gen_masks_from_bboxes(self, bboxes, img_shape):
"""Generate gt_masks based on gt_bboxes.
Args:
bboxes (list): The bboxes's list.
img_shape (tuple): The shape of image.
Returns:
BitmapMasks
"""
self.paste_by_box = True
img_h, img_w = img_shape[:2]
xmin, ymin = bboxes[:, 0:1], bboxes[:, 1:2]
xmax, ymax = bboxes[:, 2:3], bboxes[:, 3:4]
gt_masks = np.zeros((len(bboxes), img_h, img_w), dtype=np.uint8)
for i in range(len(bboxes)):
gt_masks[i,
int(ymin[i]):int(ymax[i]),
int(xmin[i]):int(xmax[i])] = 1
return BitmapMasks(gt_masks, img_h, img_w)
def get_gt_masks(self, results):
"""Get gt_masks originally or generated based on bboxes.
If gt_masks is not contained in results,
it will be generated based on gt_bboxes.
Args:
results (dict): Result dict.
Returns:
BitmapMasks: gt_masks, originally or generated based on bboxes.
"""
if results.get('gt_masks', None) is not None:
return results['gt_masks']
else:
return self.gen_masks_from_bboxes(
results.get('gt_bboxes', []), results['img'].shape)
def __call__(self, results):
"""Call function to make a copy-paste of image.
Args:
results (dict): Result dict.
Returns:
dict: Result dict with copy-paste transformed.
"""
assert 'mix_results' in results
num_images = len(results['mix_results'])
assert num_images == 1, \
f'CopyPaste only supports processing 2 images, got {num_images}'
# Get gt_masks originally or generated based on bboxes.
results['gt_masks'] = self.get_gt_masks(results)
# only one mix picture
results['mix_results'][0]['gt_masks'] = self.get_gt_masks(
results['mix_results'][0])
if self.selected:
selected_results = self._select_object(results['mix_results'][0])
else:
selected_results = results['mix_results'][0]
return self._copy_paste(results, selected_results)
def _select_object(self, results):
"""Select some objects from the source results."""
bboxes = results['gt_bboxes']
labels = results['gt_labels']
masks = results['gt_masks']
max_num_pasted = min(bboxes.shape[0] + 1, self.max_num_pasted)
num_pasted = np.random.randint(0, max_num_pasted)
selected_inds = np.random.choice(
bboxes.shape[0], size=num_pasted, replace=False)
selected_bboxes = bboxes[selected_inds]
selected_labels = labels[selected_inds]
selected_masks = masks[selected_inds]
results['gt_bboxes'] = selected_bboxes
results['gt_labels'] = selected_labels
results['gt_masks'] = selected_masks
return results
def _copy_paste(self, dst_results, src_results):
"""CopyPaste transform function.
Args:
dst_results (dict): Result dict of the destination image.
src_results (dict): Result dict of the source image.
Returns:
dict: Updated result dict.
"""
dst_img = dst_results['img']
dst_bboxes = dst_results['gt_bboxes']
dst_labels = dst_results['gt_labels']
dst_masks = dst_results['gt_masks']
src_img = src_results['img']
src_bboxes = src_results['gt_bboxes']
src_labels = src_results['gt_labels']
src_masks = src_results['gt_masks']
if len(src_bboxes) == 0:
if self.paste_by_box:
dst_results.pop('gt_masks')
return dst_results
# update masks and generate bboxes from updated masks
composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0)
updated_dst_masks = self.get_updated_masks(dst_masks, composed_mask)
updated_dst_bboxes = updated_dst_masks.get_bboxes()
assert len(updated_dst_bboxes) == len(updated_dst_masks)
# filter totally occluded objects
bboxes_inds = np.all(
np.abs(
(updated_dst_bboxes - dst_bboxes)) <= self.bbox_occluded_thr,
axis=-1)
masks_inds = updated_dst_masks.masks.sum(
axis=(1, 2)) > self.mask_occluded_thr
valid_inds = bboxes_inds | masks_inds
# Paste source objects to destination image directly
img = dst_img * (1 - composed_mask[..., np.newaxis]
) + src_img * composed_mask[..., np.newaxis]
bboxes = np.concatenate([updated_dst_bboxes[valid_inds], src_bboxes])
labels = np.concatenate([dst_labels[valid_inds], src_labels])
masks = np.concatenate(
[updated_dst_masks.masks[valid_inds], src_masks.masks])
dst_results['img'] = img
dst_results['gt_bboxes'] = bboxes
dst_results['gt_labels'] = labels
if self.paste_by_box:
dst_results.pop('gt_masks')
else:
dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1],
masks.shape[2])
return dst_results
def get_updated_masks(self, masks, composed_mask):
assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \
'Cannot compare two arrays of different size'
masks.masks = np.where(composed_mask, 0, masks.masks)
return masks
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'max_num_pasted={self.max_num_pasted}, '
repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, '
repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, '
repr_str += f'selected={self.selected}, '
return repr_str