Vexa's picture
Duplicate from pivich/sovits-new
d5d7329
raw
history blame
4.4 kB
import torch
from torch import nn
from so_vits_svc_fork.modules import attentions as attentions
from so_vits_svc_fork.modules import commons as commons
from so_vits_svc_fork.modules import modules as modules
class SpeakerEncoder(torch.nn.Module):
def __init__(
self,
mel_n_channels=80,
model_num_layers=3,
model_hidden_size=256,
model_embedding_size=256,
):
super().__init__()
self.lstm = nn.LSTM(
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels)
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
mel_slices = []
for i in range(0, total_frames - partial_frames, partial_hop):
mel_range = torch.arange(i, i + partial_frames)
mel_slices.append(mel_range)
return mel_slices
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
mel_len = mel.size(1)
last_mel = mel[:, -partial_frames:]
if mel_len > partial_frames:
mel_slices = self.compute_partial_slices(
mel_len, partial_frames, partial_hop
)
mels = list(mel[:, s] for s in mel_slices)
mels.append(last_mel)
mels = torch.stack(tuple(mels), 0).squeeze(1)
with torch.no_grad():
partial_embeds = self(mels)
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
# embed = embed / torch.linalg.norm(embed, 2)
else:
with torch.no_grad():
embed = self(last_mel)
return embed
class Encoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
# print(x.shape,x_lengths.shape)
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
x.dtype
)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class TextEncoder(nn.Module):
def __init__(
self,
out_channels,
hidden_channels,
kernel_size,
n_layers,
gin_channels=0,
filter_channels=None,
n_heads=None,
p_dropout=None,
):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.gin_channels = gin_channels
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
self.f0_emb = nn.Embedding(256, hidden_channels)
self.enc_ = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
def forward(self, x, x_mask, f0=None, noice_scale=1):
x = x + self.f0_emb(f0).transpose(1, 2)
x = self.enc_(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
return z, m, logs, x_mask