Vexa's picture
Duplicate from pivich/sovits-new
d5d7329
raw
history blame
4.91 kB
from __future__ import annotations
import math
from logging import getLogger
from pathlib import Path
from typing import Any
import numpy as np
import torch
from cm_time import timer
from joblib import Parallel, delayed
from sklearn.cluster import KMeans, MiniBatchKMeans
from tqdm_joblib import tqdm_joblib
LOG = getLogger(__name__)
def train_cluster(
input_dir: Path | str,
n_clusters: int,
use_minibatch: bool = True,
batch_size: int = 4096,
partial_fit: bool = False,
verbose: bool = False,
) -> dict:
input_dir = Path(input_dir)
if not partial_fit:
LOG.info(f"Loading features from {input_dir}")
features = []
for path in input_dir.rglob("*.data.pt"):
with path.open("rb") as f:
features.append(
torch.load(f, weights_only=True)["content"].squeeze(0).numpy().T
)
if not features:
raise ValueError(f"No features found in {input_dir}")
features = np.concatenate(features, axis=0).astype(np.float32)
if features.shape[0] < n_clusters:
raise ValueError(
"Too few HuBERT features to cluster. Consider using a smaller number of clusters."
)
LOG.info(
f"shape: {features.shape}, size: {features.nbytes/1024**2:.2f} MB, dtype: {features.dtype}"
)
with timer() as t:
if use_minibatch:
kmeans = MiniBatchKMeans(
n_clusters=n_clusters,
verbose=verbose,
batch_size=batch_size,
max_iter=80,
n_init="auto",
).fit(features)
else:
kmeans = KMeans(
n_clusters=n_clusters, verbose=verbose, n_init="auto"
).fit(features)
LOG.info(f"Clustering took {t.elapsed:.2f} seconds")
x = {
"n_features_in_": kmeans.n_features_in_,
"_n_threads": kmeans._n_threads,
"cluster_centers_": kmeans.cluster_centers_,
}
return x
else:
# minibatch partial fit
paths = list(input_dir.rglob("*.data.pt"))
if len(paths) == 0:
raise ValueError(f"No features found in {input_dir}")
LOG.info(f"Found {len(paths)} features in {input_dir}")
n_batches = math.ceil(len(paths) / batch_size)
LOG.info(f"Splitting into {n_batches} batches")
with timer() as t:
kmeans = MiniBatchKMeans(
n_clusters=n_clusters,
verbose=verbose,
batch_size=batch_size,
max_iter=80,
n_init="auto",
)
for i in range(0, len(paths), batch_size):
LOG.info(
f"Processing batch {i//batch_size+1}/{n_batches} for speaker {input_dir.stem}"
)
features = []
for path in paths[i : i + batch_size]:
with path.open("rb") as f:
features.append(
torch.load(f, weights_only=True)["content"]
.squeeze(0)
.numpy()
.T
)
features = np.concatenate(features, axis=0).astype(np.float32)
kmeans.partial_fit(features)
LOG.info(f"Clustering took {t.elapsed:.2f} seconds")
x = {
"n_features_in_": kmeans.n_features_in_,
"_n_threads": kmeans._n_threads,
"cluster_centers_": kmeans.cluster_centers_,
}
return x
def main(
input_dir: Path | str,
output_path: Path | str,
n_clusters: int = 10000,
use_minibatch: bool = True,
batch_size: int = 4096,
partial_fit: bool = False,
verbose: bool = False,
) -> None:
input_dir = Path(input_dir)
output_path = Path(output_path)
if not (use_minibatch or not partial_fit):
raise ValueError("partial_fit requires use_minibatch")
def train_cluster_(input_path: Path, **kwargs: Any) -> tuple[str, dict]:
return input_path.stem, train_cluster(input_path, **kwargs)
with tqdm_joblib(desc="Training clusters", total=len(list(input_dir.iterdir()))):
parallel_result = Parallel(n_jobs=-1)(
delayed(train_cluster_)(
speaker_name,
n_clusters=n_clusters,
use_minibatch=use_minibatch,
batch_size=batch_size,
partial_fit=partial_fit,
verbose=verbose,
)
for speaker_name in input_dir.iterdir()
)
assert parallel_result is not None
checkpoint = dict(parallel_result)
output_path.parent.mkdir(exist_ok=True, parents=True)
with output_path.open("wb") as f:
torch.save(checkpoint, f)