Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import os | |
| token = os.getenv("hf_token") | |
| def load_model(): | |
| model_name = "robzchhangte/bloomz-dv5-with-mztok" | |
| # model_name = "robzchhangte/10-vanillagpt2-ft-INS-dv5" | |
| tokenizer = AutoTokenizer.from_pretrained("robzchhangte/bloomz-dv5-with-mztok", token=token) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, token=token) | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| st.title("π Mizo Text Generator") | |
| prompt = st.text_area("Enter your prompt (in Mizo):", height=150) | |
| st.text("Example: Lirthei pung nasa chu hmasawnna rah a nih rualin harsatna tam tak..") | |
| generate_button = st.button("Generate Text") | |
| if generate_button and prompt: | |
| with st.spinner("Generating text..."): | |
| inputs = tokenizer.encode(prompt, return_tensors='pt') | |
| outputs = model.generate( | |
| inputs, | |
| max_length=50, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| st.subheader("Generated Text:") | |
| st.write(generated_text) | |