Spaces:
Running
Running
import os | |
from huggingface_hub import Repository | |
# Retrieve the token from the environment variables | |
token = os.environ.get("token") | |
repo = Repository( | |
local_dir="SVD", | |
repo_type="model", | |
clone_from="robocan/GeoG_City_Small", | |
token=token | |
) | |
repo.git_pull() | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
import pandas as pd | |
import numpy as np | |
import io | |
import joblib | |
import requests | |
from tqdm import tqdm | |
from PIL import Image | |
from torchvision import transforms | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.model_selection import train_test_split | |
from torchvision import models | |
import gradio as gr | |
device = 'cpu' | |
le = LabelEncoder() | |
le = joblib.load("SVD/le.gz") | |
class ModelPre(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.embedding = torch.nn.Sequential( | |
*list(models.efficientnet_v2_m(weights=models.EfficientNet_V2_M_Weights.IMAGENET1K_V1).children())[:-1], | |
torch.nn.Flatten(), | |
torch.nn.Linear(in_features=1280,out_features=512), | |
torch.nn.Linear(in_features=512,out_features=len_classes), | |
) | |
# Freeze all layers | |
def forward(self, data): | |
return self.embedding(data) | |
model = torch.load("SVD/GeoG.pth", map_location=torch.device(device)) | |
modelm = ModelPre() | |
modelm.load_state_dict(model['model']) | |
import warnings | |
warnings.filterwarnings("ignore", category=RuntimeWarning, module="multiprocessing.popen_fork") | |
cmp = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize(size=(224, 224), antialias=True), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
def predict(input_img): | |
with torch.inference_mode(): | |
img = cmp(input_img).unsqueeze(0) | |
res = modelm(img.to(device)) | |
prediction = le.inverse_transform(torch.argmax(res.cpu()).unsqueeze(0).numpy())[0] | |
return prediction | |
gradio_app = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="Upload an Image", type="pil"), | |
outputs=gr.Label(label="Location"), | |
title="Predict the Location of this Image" | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |