genetic_algorithm / pages /5_Heart_Disease_Prediction.py
robitalhazmi's picture
Add additional content
4a832b8
raw
history blame
2.79 kB
import streamlit as st
import joblib
# Set page configuration
st.set_page_config(page_title="Heart Disease Prediction", layout="wide")
# Load the trained model
model = joblib.load("./model-3.joblib")
# Define function to predict heart disease
def predict_heart_disease(sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7):
print([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]])
prediction = model.predict([[sex, exang, cp_1, cp_2, cp_4, slope_1, slope_2, thal_3, thal_7]])
return prediction
def run():
st.title("Heart Disease Prediction")
st.write("Please provide the following information to predict heart disease:")
# Design user interface
col1, col2 = st.columns([2, 1])
with col1:
sex = st.selectbox("Sex", ["Female", "Male"])
exang = st.selectbox("Exercise Induced Angina", ["No", "Yes"])
cp = st.selectbox("Chest Pain Type", ["Typical Angina", "Atypical Angina", "Non-Anginal Pain", "Asymptomatic"])
slope = st.selectbox("Slope of Peak Exercise ST Segment", ["Upsloping", "Flat", "Downsloping"])
thal = st.selectbox("Thal", ["Normal", "Fixed Defect", "Reversible Defect"])
with col2:
st.image("https://images.unsplash.com/photo-1618939304347-e91b1f33d2ab?q=80&w=1974&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D", width=275)
# Map selected options to numerical values
sex_mapping = {"Female": 0, "Male": 1}
exang_mapping = {"No": 0, "Yes": 1}
cp_1_mapping = {"Typical Angina": 1, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 0}
cp_2_mapping = {"Typical Angina": 0, "Atypical Angina": 1, "Non-Anginal Pain": 0, "Asymptomatic": 0}
cp_4_mapping = {"Typical Angina": 0, "Atypical Angina": 0, "Non-Anginal Pain": 0, "Asymptomatic": 1}
slope_1_mapping = {"Upsloping": 1, "Flat": 0, "Downsloping": 0}
slope_2_mapping = {"Upsloping": 0, "Flat": 1, "Downsloping": 0}
thal_3_mapping = {"Normal": 1, "Fixed Defect": 0, "Reversible Defect": 0}
thal_7_mapping = {"Normal": 0, "Fixed Defect": 0, "Reversible Defect": 1}
# Predict button
if st.button("Predict", key="predict_button"):
result = predict_heart_disease(sex_mapping[sex], exang_mapping[exang], cp_1_mapping[cp], cp_2_mapping[cp], cp_4_mapping[cp], slope_1_mapping[slope], slope_2_mapping[slope], thal_3_mapping[thal], thal_7_mapping[thal])
if result == 1:
st.error("The model predicts that the patient has heart disease.")
else:
st.success("The model predicts that the patient does not have heart disease.")
# Add a footer
st.markdown("---")
st.write("Made with ❤️ by Viga, Hanum, & Robit")
if __name__ == "__main__":
run()