Spaces:
Running
Running
Yurii Paniv
commited on
Commit
·
442ed91
1
Parent(s):
14485b0
Add proper wav2vec in demo
Browse files- app.py +18 -2
- requirements-torch.txt +2 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -8,7 +8,8 @@ import requests
|
|
8 |
from os.path import exists
|
9 |
from stt import Model
|
10 |
from datetime import datetime
|
11 |
-
|
|
|
12 |
|
13 |
# download model
|
14 |
version = "v0.4"
|
@@ -18,6 +19,10 @@ scorer_name = "kenlm.scorer"
|
|
18 |
model_link = f"{storage_url}/{model_name}"
|
19 |
scorer_link = f"{storage_url}/{scorer_name}"
|
20 |
|
|
|
|
|
|
|
|
|
21 |
def download(url, file_name):
|
22 |
if not exists(file_name):
|
23 |
print(f"Downloading {file_name}")
|
@@ -37,6 +42,16 @@ def deepspeech(audio: np.array, use_scorer=False):
|
|
37 |
|
38 |
return result
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def inference(audio: Tuple[int, np.array]):
|
42 |
print("=============================")
|
@@ -50,7 +65,8 @@ def inference(audio: Tuple[int, np.array]):
|
|
50 |
|
51 |
transcripts = []
|
52 |
|
53 |
-
transcripts.append(
|
|
|
54 |
transcripts.append(deepspeech(audio, use_scorer=True))
|
55 |
print(f"Deepspeech with LM: `{transcripts[-1]}`")
|
56 |
transcripts.append(deepspeech(audio))
|
|
|
8 |
from os.path import exists
|
9 |
from stt import Model
|
10 |
from datetime import datetime
|
11 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
12 |
+
import torch
|
13 |
|
14 |
# download model
|
15 |
version = "v0.4"
|
|
|
19 |
model_link = f"{storage_url}/{model_name}"
|
20 |
scorer_link = f"{storage_url}/{scorer_name}"
|
21 |
|
22 |
+
model = Wav2Vec2ForCTC.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk")#.to("cuda")
|
23 |
+
processor = Wav2Vec2Processor.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk")
|
24 |
+
# TODO: download config.json, pytorch_model.bin, preprocessor_config.json, tokenizer_config.json, vocab.json, added_tokens.json, special_tokens.json
|
25 |
+
|
26 |
def download(url, file_name):
|
27 |
if not exists(file_name):
|
28 |
print(f"Downloading {file_name}")
|
|
|
42 |
|
43 |
return result
|
44 |
|
45 |
+
def wav2vec2(audio: np.array):
|
46 |
+
input_dict = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
47 |
+
with torch.no_grad():
|
48 |
+
output = model(input_dict.input_values.float())
|
49 |
+
|
50 |
+
logits = output.logits
|
51 |
+
|
52 |
+
pred_ids = torch.argmax(logits, dim=-1)[0]
|
53 |
+
|
54 |
+
return processor.decode(pred_ids)
|
55 |
|
56 |
def inference(audio: Tuple[int, np.array]):
|
57 |
print("=============================")
|
|
|
65 |
|
66 |
transcripts = []
|
67 |
|
68 |
+
transcripts.append(wav2vec2(audio))
|
69 |
+
print(f"Wav2Vec2: `{transcripts[-1]}`")
|
70 |
transcripts.append(deepspeech(audio, use_scorer=True))
|
71 |
print(f"Deepspeech with LM: `{transcripts[-1]}`")
|
72 |
transcripts.append(deepspeech(audio))
|
requirements-torch.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
-i https://download.pytorch.org/whl/cpu
|
2 |
+
torch==1.12
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
STT==1.3.0
|
2 |
-
|
|
|
|
|
|
1 |
STT==1.3.0
|
2 |
+
transformers==4.21.2
|
3 |
+
pydub==0.25.1
|
4 |
+
-r requirements-torch.txt
|