Spaces:
Running
Running
from io import BytesIO | |
from typing import Tuple | |
import wave | |
import gradio as gr | |
import numpy as np | |
from pydub.audio_segment import AudioSegment | |
import requests | |
from os.path import exists | |
from stt import Model | |
from datetime import datetime | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
# download model | |
version = "v0.4" | |
storage_url = f"https://github.com/robinhad/voice-recognition-ua/releases/download/{version}" | |
model_name = "uk.tflite" | |
scorer_name = "kenlm.scorer" | |
model_link = f"{storage_url}/{model_name}" | |
scorer_link = f"{storage_url}/{scorer_name}" | |
model = Wav2Vec2ForCTC.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk")#.to("cuda") | |
processor = Wav2Vec2Processor.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk") | |
# TODO: download config.json, pytorch_model.bin, preprocessor_config.json, tokenizer_config.json, vocab.json, added_tokens.json, special_tokens.json | |
def download(url, file_name): | |
if not exists(file_name): | |
print(f"Downloading {file_name}") | |
r = requests.get(url, allow_redirects=True) | |
with open(file_name, 'wb') as file: | |
file.write(r.content) | |
else: | |
print(f"Found {file_name}. Skipping download...") | |
def deepspeech(audio: np.array, use_scorer=False): | |
ds = Model(model_name) | |
if use_scorer: | |
ds.enableExternalScorer("kenlm.scorer") | |
result = ds.stt(audio) | |
return result | |
def wav2vec2(audio: np.array): | |
input_dict = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
output = model(input_dict.input_values.float()) | |
logits = output.logits | |
pred_ids = torch.argmax(logits, dim=-1)[0] | |
return processor.decode(pred_ids) | |
def inference(audio: Tuple[int, np.array]): | |
print("=============================") | |
print(f"Time: {datetime.utcnow()}.`") | |
output_audio = _convert_audio(audio[1], audio[0]) | |
fin = wave.open(output_audio, 'rb') | |
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) | |
fin.close() | |
transcripts = [] | |
transcripts.append(wav2vec2(audio)) | |
print(f"Wav2Vec2: `{transcripts[-1]}`") | |
transcripts.append(deepspeech(audio, use_scorer=True)) | |
print(f"Deepspeech with LM: `{transcripts[-1]}`") | |
transcripts.append(deepspeech(audio)) | |
print(f"Deepspeech: `{transcripts[-1]}`") | |
return tuple(transcripts) | |
def _convert_audio(audio_data: np.array, sample_rate: int): | |
audio_limit = sample_rate * 60 * 2 # limit audio to 2 minutes max | |
if audio_data.shape[0] > audio_limit: | |
audio_data = audio_data[0:audio_limit] | |
source_audio = BytesIO() | |
source_audio.write(audio_data) | |
source_audio.seek(0) | |
output_audio = BytesIO() | |
wav_file: AudioSegment = AudioSegment.from_raw( | |
source_audio, | |
channels=1, | |
sample_width=4, | |
frame_rate=sample_rate | |
) | |
wav_file.export(output_audio, "wav", codec="pcm_s16le", parameters=["-ar", "16k"]) | |
output_audio.seek(0) | |
return output_audio | |
with open("README.md") as file: | |
article = file.read() | |
article = article[article.find("---\n", 4) + 5::] | |
iface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.inputs.Audio(type="numpy", | |
label="Аудіо", optional=False), | |
], | |
outputs=[gr.outputs.Textbox(label="Wav2Vec2"), gr.outputs.Textbox(label="DeepSpeech with LM"), gr.outputs.Textbox(label="DeepSpeech")], | |
title="🇺🇦 Ukrainian Speech-to-Text models", | |
theme="huggingface", | |
description="Україномовний🇺🇦 Speech-to-Text за допомогою Coqui STT", | |
article=article, | |
) | |
download(model_link, model_name) | |
download(scorer_link, scorer_name) | |
iface.launch() | |