MMOCR / configs /textrecog /sar /sar_r31_sequential_decoder_academic.py
Robin Chiu
Add the configs
a92ae91
raw
history blame
1.56 kB
_base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
'../../_base_/recog_pipelines/sar_pipeline.py',
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}
label_convertor = dict(
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
model = dict(
type='SARNet',
backbone=dict(type='ResNet31OCR'),
encoder=dict(
type='SAREncoder',
enc_bi_rnn=False,
enc_do_rnn=0.1,
enc_gru=False,
),
decoder=dict(
type='SequentialSARDecoder',
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_do_rnn=0,
dec_gru=False,
pred_dropout=0.1,
d_k=512,
pred_concat=True),
loss=dict(type='SARLoss'),
label_convertor=label_convertor,
max_seq_len=30)
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='acc')