|
_base_ = [ |
|
'../../_base_/default_runtime.py', |
|
'../../_base_/schedules/schedule_adam_step_5e.py', |
|
'../../_base_/recog_pipelines/sar_pipeline.py', |
|
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py', |
|
'../../_base_/recog_datasets/academic_test.py' |
|
] |
|
|
|
train_list = {{_base_.train_list}} |
|
test_list = {{_base_.test_list}} |
|
|
|
train_pipeline = {{_base_.train_pipeline}} |
|
test_pipeline = {{_base_.test_pipeline}} |
|
|
|
label_convertor = dict( |
|
type='AttnConvertor', dict_type='DICT90', with_unknown=True) |
|
|
|
model = dict( |
|
type='SARNet', |
|
backbone=dict(type='ResNet31OCR'), |
|
encoder=dict( |
|
type='SAREncoder', |
|
enc_bi_rnn=False, |
|
enc_do_rnn=0.1, |
|
enc_gru=False, |
|
), |
|
decoder=dict( |
|
type='SequentialSARDecoder', |
|
enc_bi_rnn=False, |
|
dec_bi_rnn=False, |
|
dec_do_rnn=0, |
|
dec_gru=False, |
|
pred_dropout=0.1, |
|
d_k=512, |
|
pred_concat=True), |
|
loss=dict(type='SARLoss'), |
|
label_convertor=label_convertor, |
|
max_seq_len=30) |
|
|
|
data = dict( |
|
samples_per_gpu=64, |
|
workers_per_gpu=2, |
|
val_dataloader=dict(samples_per_gpu=1), |
|
test_dataloader=dict(samples_per_gpu=1), |
|
train=dict( |
|
type='UniformConcatDataset', |
|
datasets=train_list, |
|
pipeline=train_pipeline), |
|
val=dict( |
|
type='UniformConcatDataset', |
|
datasets=test_list, |
|
pipeline=test_pipeline), |
|
test=dict( |
|
type='UniformConcatDataset', |
|
datasets=test_list, |
|
pipeline=test_pipeline)) |
|
|
|
evaluation = dict(interval=1, metric='acc') |
|
|