Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -54,6 +54,10 @@ def preprocess(text):
|
|
54 |
text=re.sub(r"\)","",text)
|
55 |
text=" ".join(text.split())
|
56 |
return text
|
|
|
|
|
|
|
|
|
57 |
|
58 |
st.set_page_config(layout="wide")
|
59 |
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
@@ -62,7 +66,7 @@ colT1,colT2 = st.columns([2,8])
|
|
62 |
with colT2:
|
63 |
#st.title('Analisis de comentarios sexistas en Twitter')
|
64 |
st.markdown(""" <style> .font {
|
65 |
-
font-size:40px ; font-family: 'Cooper Black'; color: #FF9633;}
|
66 |
</style> """, unsafe_allow_html=True)
|
67 |
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
|
68 |
|
@@ -151,6 +155,8 @@ def run():
|
|
151 |
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
|
152 |
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
|
153 |
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
|
154 |
-
|
|
|
|
|
155 |
#st.write(df)
|
156 |
run()
|
|
|
54 |
text=re.sub(r"\)","",text)
|
55 |
text=" ".join(text.split())
|
56 |
return text
|
57 |
+
|
58 |
+
def highlight_survived(s):
|
59 |
+
return ['background-color: red']*len(s) if s.Sexista else ['background-color: green']*len(s)
|
60 |
+
|
61 |
|
62 |
st.set_page_config(layout="wide")
|
63 |
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
|
|
66 |
with colT2:
|
67 |
#st.title('Analisis de comentarios sexistas en Twitter')
|
68 |
st.markdown(""" <style> .font {
|
69 |
+
font-size:40px ; font-family: 'Cooper Black'; color: #FF9633;background-color: Blue;}
|
70 |
</style> """, unsafe_allow_html=True)
|
71 |
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
|
72 |
|
|
|
155 |
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
|
156 |
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
|
157 |
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
|
158 |
+
|
159 |
+
st.dataframe(df.style.apply(highlight_survived, axis=1))
|
160 |
+
#st.table(df)
|
161 |
#st.write(df)
|
162 |
run()
|