Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,66 +27,61 @@ auth = tw.OAuthHandler(consumer_key, consumer_secret)
|
|
27 |
auth.set_access_token(access_token, access_token_secret)
|
28 |
api = tw.API(auth, wait_on_rate_limit=True)
|
29 |
|
|
|
|
|
|
|
30 |
st.title('Analisis de comentarios sexistas en Twitter con Tweepy and HuggingFace Transformers')
|
31 |
st.markdown('Esta app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexistas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado')
|
32 |
|
33 |
-
def principal(tweets,number_of_tweets):
|
34 |
-
tweet_list = [i.text for i in tweets]
|
35 |
-
text= pd.DataFrame(tweet_list)
|
36 |
-
text1=text[0].values
|
37 |
-
indices1=tokenizer.batch_encode_plus(text1.tolist(), max_length=128,add_special_tokens=True,return_attention_mask=True,pad_to_max_length=True,truncation=True)
|
38 |
-
input_ids1=indices1["input_ids"]
|
39 |
-
attention_masks1=indices1["attention_mask"]
|
40 |
-
prediction_inputs1= torch.tensor(input_ids1)
|
41 |
-
prediction_masks1 = torch.tensor(attention_masks1)
|
42 |
-
# Set the batch size.
|
43 |
-
batch_size = 25
|
44 |
-
# Create the DataLoader.
|
45 |
-
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
46 |
-
prediction_sampler1 = SequentialSampler(prediction_data1)
|
47 |
-
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
48 |
-
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
|
49 |
-
# Put model in evaluation mode
|
50 |
-
model.eval()
|
51 |
-
# Tracking variables
|
52 |
-
predictions = []
|
53 |
-
# Predict
|
54 |
-
for batch in prediction_dataloader1:
|
55 |
-
batch = tuple(t.to(device) for t in batch)
|
56 |
-
# Unpack the inputs from our dataloader
|
57 |
-
b_input_ids1, b_input_mask1 = batch
|
58 |
-
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
59 |
-
with torch.no_grad():
|
60 |
-
# Forward pass, calculate logit predictions
|
61 |
-
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
62 |
-
logits1 = outputs1[0]
|
63 |
-
# Move logits and labels to CPU
|
64 |
-
logits1 = logits1.detach().cpu().numpy()
|
65 |
-
# Store predictions and true labels
|
66 |
-
predictions.append(logits1)
|
67 |
-
flat_predictions = [item for sublist in predictions for item in sublist]
|
68 |
-
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
|
69 |
-
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Latest'+str(number_of_tweets)+'Tweets'+' on '+search_words, 'Sexista'])
|
70 |
-
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
|
71 |
-
st.table(df)
|
72 |
-
|
73 |
def run():
|
74 |
with st.form(key='Introduzca nombre'):
|
75 |
-
search_words = st.text_input('Introduzca el termino para analizar
|
76 |
number_of_tweets = st.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10)
|
77 |
-
submit_button = st.form_submit_button(label='
|
78 |
-
submit_button1 = st.form_submit_button(label='Usuario')
|
79 |
-
|
80 |
if submit_button:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
#st.write(df)
|
92 |
run()
|
|
|
27 |
auth.set_access_token(access_token, access_token_secret)
|
28 |
api = tw.API(auth, wait_on_rate_limit=True)
|
29 |
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
st.title('Analisis de comentarios sexistas en Twitter con Tweepy and HuggingFace Transformers')
|
34 |
st.markdown('Esta app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexistas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado')
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def run():
|
37 |
with st.form(key='Introduzca nombre'):
|
38 |
+
search_words = st.text_input('Introduzca el termino para analizar')
|
39 |
number_of_tweets = st.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10)
|
40 |
+
submit_button = st.form_submit_button(label='Submit')
|
|
|
|
|
41 |
if submit_button:
|
42 |
+
tweets =tw.Cursor(api.search_tweets,q=search_words).items(number_of_tweets)
|
43 |
+
tweet_list = [i.text for i in tweets]
|
44 |
+
text= pd.DataFrame(tweet_list)
|
45 |
+
text1=text[0].values
|
46 |
+
indices1=tokenizer.batch_encode_plus(text1.tolist(),
|
47 |
+
max_length=128,
|
48 |
+
add_special_tokens=True,
|
49 |
+
return_attention_mask=True,
|
50 |
+
pad_to_max_length=True,
|
51 |
+
truncation=True)
|
52 |
+
input_ids1=indices1["input_ids"]
|
53 |
+
attention_masks1=indices1["attention_mask"]
|
54 |
+
prediction_inputs1= torch.tensor(input_ids1)
|
55 |
+
prediction_masks1 = torch.tensor(attention_masks1)
|
56 |
+
# Set the batch size.
|
57 |
+
batch_size = 25
|
58 |
+
# Create the DataLoader.
|
59 |
+
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
60 |
+
prediction_sampler1 = SequentialSampler(prediction_data1)
|
61 |
+
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
62 |
+
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
|
63 |
+
# Put model in evaluation mode
|
64 |
+
model.eval()
|
65 |
+
# Tracking variables
|
66 |
+
predictions = []
|
67 |
+
# Predict
|
68 |
+
for batch in prediction_dataloader1:
|
69 |
+
batch = tuple(t.to(device) for t in batch)
|
70 |
+
# Unpack the inputs from our dataloader
|
71 |
+
b_input_ids1, b_input_mask1 = batch
|
72 |
+
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
73 |
+
with torch.no_grad():
|
74 |
+
# Forward pass, calculate logit predictions
|
75 |
+
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
76 |
+
logits1 = outputs1[0]
|
77 |
+
# Move logits and labels to CPU
|
78 |
+
logits1 = logits1.detach().cpu().numpy()
|
79 |
+
# Store predictions and true labels
|
80 |
+
predictions.append(logits1)
|
81 |
+
flat_predictions = [item for sublist in predictions for item in sublist]
|
82 |
+
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
|
83 |
+
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Latest'+str(number_of_tweets)+'Tweets'+' on '+search_words, 'Sexista'])
|
84 |
+
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
|
85 |
+
st.table(df)
|
86 |
#st.write(df)
|
87 |
run()
|