Spaces:
Runtime error
Runtime error
import tweepy as tw | |
import streamlit as st | |
import pandas as pd | |
import torch | |
import numpy as np | |
import re | |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW | |
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo') | |
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo") | |
import torch | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
print('I will use the GPU:', torch.cuda.get_device_name(0)) | |
else: | |
print('No GPU available, using the CPU instead.') | |
device = torch.device("cpu") | |
consumer_key = st.secrets["consumer_key"] | |
consumer_secret = st.secrets["consumer_secret"] | |
access_token = st.secrets["access_token"] | |
access_token_secret = st.secrets["access_token_secret"] | |
auth = tw.OAuthHandler(consumer_key, consumer_secret) | |
auth.set_access_token(access_token, access_token_secret) | |
api = tw.API(auth, wait_on_rate_limit=True) | |
def strip_undesired_chars(tweet): | |
stripped_tweet = tweet.replace('\n', ' ').replace('\r', '') | |
char_list = [stripped_tweet[j] for j in range(len(stripped_tweet)) if ord(stripped_tweet[j]) in range(65536)] | |
stripped_tweet='' | |
for j in char_list: | |
stripped_tweet=stripped_tweet+j | |
return stripped_tweet | |
st.title('Analisis de comentarios sexistas en Twitter con Tweepy and HuggingFace Transformers') | |
st.markdown('Esta app utiliza tweepy para descargar tweets de twitter en base a la información de entrada y procesa los tweets usando transformers de HuggingFace para detectar comentarios sexistas. El resultado y los tweets correspondientes se almacenan en un dataframe para mostrarlo que es lo que se ve como resultado') | |
def run(): | |
with st.form(key='Introduzca nombre'): | |
search_words = st.text_input('Introduzca el termino para analizar') | |
number_of_tweets = st.number_input('Introduzca número de twweets a analizar. Máximo 50', 0,50,10) | |
submit_button = st.form_submit_button(label='Submit') | |
if submit_button: | |
date_since = "2020-09-14" | |
new_search = search_words + " -filter:retweets" | |
#tweets = tweepy.Cursor(api.search,q=new_search,lang="es",since=date_since).items(number_of_tweets) | |
#tweets =tw.Cursor(api.search_tweets,q=search_words).items(number_of_tweets) | |
tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",since=date_since).items(number_of_tweets) | |
#tweet_list = [i.text for i in tweets] | |
tweet_list = [strip_undesired_chars(i.text) for i in tweets] | |
text= pd.DataFrame(tweet_list) | |
text1=text[0].values | |
indices1=tokenizer.batch_encode_plus(text1.tolist(), | |
max_length=128, | |
add_special_tokens=True, | |
return_attention_mask=True, | |
pad_to_max_length=True, | |
truncation=True) | |
input_ids1=indices1["input_ids"] | |
attention_masks1=indices1["attention_mask"] | |
prediction_inputs1= torch.tensor(input_ids1) | |
prediction_masks1 = torch.tensor(attention_masks1) | |
# Set the batch size. | |
batch_size = 25 | |
# Create the DataLoader. | |
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1) | |
prediction_sampler1 = SequentialSampler(prediction_data1) | |
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size) | |
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1))) | |
# Put model in evaluation mode | |
model.eval() | |
# Tracking variables | |
predictions = [] | |
# Predict | |
for batch in prediction_dataloader1: | |
batch = tuple(t.to(device) for t in batch) | |
# Unpack the inputs from our dataloader | |
b_input_ids1, b_input_mask1 = batch | |
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction | |
with torch.no_grad(): | |
# Forward pass, calculate logit predictions | |
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1) | |
logits1 = outputs1[0] | |
# Move logits and labels to CPU | |
logits1 = logits1.detach().cpu().numpy() | |
# Store predictions and true labels | |
predictions.append(logits1) | |
flat_predictions = [item for sublist in predictions for item in sublist] | |
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)] | |
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Latest'+str(number_of_tweets)+'Tweets'+' on '+search_words, 'Sexista']) | |
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista') | |
st.table(df) | |
#st.write(df) | |
run() |