Spaces:
Sleeping
Sleeping
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks | |
def fields(raw_class): | |
if hasattr(raw_class, '__dataclass_fields__'): | |
# For make_dataclass created classes | |
if raw_class.__dataclass_fields__: | |
return [field.type for field in raw_class.__dataclass_fields__.values()] | |
else: | |
# For regular @dataclass with empty __dataclass_fields__, check __dict__ | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
# Fallback for non-dataclass | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__" and hasattr(v, 'name')] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True))) | |
auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True))) | |
# Average score | |
auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True))) | |
#Scores | |
for task in Tasks: | |
auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True))) | |
# Model information - simplified to only essential columns | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
precision = ColumnContent("precision", "str", True) | |
model_type = ColumnContent("model_type", "str", True) | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
ENCODER = ModelDetails(name="encoder", symbol="π€") # BERT-like | |
DECODER = ModelDetails(name="decoder", symbol="π½") # GPT-like | |
ENCODER_DECODER = ModelDetails(name="encoder-decoder", symbol="π") # T5-like | |
Unknown = ModelDetails(name="unknown", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type_str): | |
if "encoder-decoder" in type_str.lower() or "π" in type_str: | |
return ModelType.ENCODER_DECODER | |
elif "encoder" in type_str.lower() or "π€" in type_str: | |
return ModelType.ENCODER | |
elif "decoder" in type_str.lower() or "π½" in type_str: | |
return ModelType.DECODER | |
return ModelType.Unknown | |
def from_config(config): | |
"""Detect model architecture type from config""" | |
if hasattr(config, 'model_type'): | |
model_type = config.model_type.lower() | |
# Encoder-decoder models | |
if model_type in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot', 'bigbird_pegasus']: | |
return ModelType.ENCODER_DECODER | |
# Decoder-only models (GPT-like) | |
elif model_type in ['gpt', 'gpt2', 'gpt_neo', 'gpt_neox', 'gptj', 'bloom', 'llama', 'mistral', 'qwen']: | |
return ModelType.DECODER | |
# Encoder-only models (BERT-like) | |
elif model_type in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']: | |
return ModelType.ENCODER | |
# Fallback: detect from architecture class name | |
if hasattr(config, 'architectures') and config.architectures: | |
arch_name = config.architectures[0].lower() | |
if any(name in arch_name for name in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): | |
return ModelType.ENCODER_DECODER | |
elif any(name in arch_name for name in ['gpt', 'bloom', 'llama', 'mistral', 'qwen']): | |
return ModelType.DECODER | |
elif any(name in arch_name for name in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert']): | |
return ModelType.ENCODER | |
return ModelType.Unknown | |
def from_architecture(architecture): | |
"""Detect model type from architecture string""" | |
if not architecture or architecture == "?": | |
return ModelType.Unknown | |
arch_lower = architecture.lower() | |
# Encoder-decoder patterns | |
if any(pattern in arch_lower for pattern in ['t5', 'bart', 'pegasus', 'mbart', 'blenderbot']): | |
return ModelType.ENCODER_DECODER | |
# Decoder patterns (GPT-like) | |
elif any(pattern in arch_lower for pattern in ['gpt', 'bloom', 'llama', 'mistral', 'qwen', 'causal']): | |
return ModelType.DECODER | |
# Encoder patterns (BERT-like) | |
elif any(pattern in arch_lower for pattern in ['bert', 'roberta', 'camembert', 'distilbert', 'electra', 'deberta', 'albert', 'formaskedlm', 'fortokenclassification', 'forsequenceclassification']): | |
return ModelType.ENCODER | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Original = ModelDetails("Original") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |