Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
import torch | |
from src.euler_scheduler import MyEulerAncestralDiscreteScheduler | |
from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image | |
from src.sdxl_inversion_pipeline import SDXLDDIMPipeline | |
from src.config import RunConfig | |
from src.editor import ImageEditorDemo | |
import spaces | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
scheduler_class = MyEulerAncestralDiscreteScheduler | |
pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) | |
pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) | |
pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config) | |
pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config) | |
pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config) | |
# if torch.cuda.is_available(): | |
# torch.cuda.max_memory_allocated(device=device) | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
# pipe.enable_xformers_memory_efficient_attention() | |
# pipe = pipe.to(device) | |
# else: | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
# pipe = pipe.to(device) | |
def infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, | |
num_inversion_steps=4, | |
inversion_max_step=0.6): | |
config = RunConfig(num_inference_steps=num_inference_steps, | |
num_inversion_steps=num_inversion_steps, | |
edit_guidance_scale=edit_guidance_scale, | |
inversion_max_step=inversion_max_step) | |
editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config, device) | |
image = editor.edit(target_prompt) | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
# css = """ | |
# #col-container-1 { | |
# margin: 0 auto; | |
# max-width: 520px; | |
# } | |
# #col-container-2 { | |
# margin: 0 auto; | |
# max-width: 520px; | |
# } | |
# """ | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
# with gr.Blocks(css=css) as demo: | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(f""" # Real Time Editing with RNRI Inversion 🍎⚡️ | |
This is a demo for our [paper](https://arxiv.org/abs/2312.12540) **RNRI: Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models**. | |
Image editing using our RNRI for inversion demonstrates significant speed-up and improved quality compared to previous state-of-the-art methods. | |
Take a look at our [project page](https://barakmam.github.io/rnri.github.io/). | |
""") | |
with gr.Row(): | |
with gr.Column(elem_id="col-container-1"): | |
with gr.Row(): | |
input_image = gr.Image(label="Input image", sources=['upload', 'webcam'], type="pil") | |
with gr.Row(): | |
description_prompt = gr.Text( | |
label="Image description", | |
info = "Enter your image description ", | |
show_label=False, | |
max_lines=1, | |
placeholder="a cake on a table", | |
container=False, | |
) | |
with gr.Row(): | |
target_prompt = gr.Text( | |
label="Edit prompt", | |
info = "Enter your edit prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="an oreo cake on a table", | |
container=False, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
edit_guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=1.2, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of RNRI iterations", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=4, | |
) | |
inversion_max_step = gr.Slider( | |
label="Inversion strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.6, | |
) | |
with gr.Row(): | |
run_button = gr.Button("Edit", scale=1) | |
with gr.Column(elem_id="col-container-2"): | |
result = gr.Image(label="Result") | |
# gr.Examples( | |
# examples = examples, | |
# inputs = [prompt] | |
# ) | |
run_button.click( | |
fn=infer, | |
inputs=[input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps, | |
num_inference_steps], | |
outputs=[result] | |
) | |
demo.queue().launch() | |
# im = infer(input_image, description_prompt, target_prompt, edit_guidance_scale, num_inference_steps=4, num_inversion_steps=4, | |
# inversion_max_step=0.6) | |