Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
MODEL_NAME_V1 = "rngzhi/cs3264-project" | |
MODEL_NAME_V2 = "rngzhi/cs3264-project-v2" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
def load_model(model_version): | |
model_name = MODEL_NAME_V1 if model_version == 'Model-v1' else MODEL_NAME_V2 | |
return pipeline( | |
task="automatic-speech-recognition", | |
model=model_name, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(model_version, inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
pipe = load_model(model_version) | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Dropdown(choices=['Model-v1', 'Model-v2'], label="Choose Model Version"), gr.Audio(sources="microphone", type="filepath")], | |
outputs="text", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Dropdown(choices=['Model-v1', 'Model-v2'], label="Choose Model Version"), gr.Audio(sources="upload", type="filepath")], | |
outputs="text", | |
examples=[["Model-v2", "samples/sample1.WAV", "upload"], ["Model-v2", "samples/sample2.WAV", "upload"]] | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe, mic_transcribe], ["Audio file", "Microphone"]) | |
demo.launch(debug=True) | |