Spaces:
Sleeping
Sleeping
rmayormartins
commited on
Commit
·
2893c3c
1
Parent(s):
2e28a78
Subindo arquivos
Browse files- README.md +46 -5
- app.py +45 -0
- bestyolo5.pt +3 -0
- example1.jpg +0 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,13 +1,54 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: ecl-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: YOLOv5 Cattle Counter
|
3 |
+
emoji:
|
4 |
+
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.12.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: ecl-2.0
|
11 |
---
|
12 |
|
13 |
+
# YOLOv5 Cattle Counter
|
14 |
+
|
15 |
+
This project uses a YOLOv5 model to detect and count cattle in images. The model was trained using custom data and is deployedusing Gradio for an interactive web interface.
|
16 |
+
|
17 |
+
|
18 |
+
## Developer
|
19 |
+
|
20 |
+
Developed by Ramon Mayor Martins (2023)
|
21 |
+
|
22 |
+
- Email: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
|
23 |
+
- Homepage: [https://rmayormartins.github.io/](https://rmayormartins.github.io/)
|
24 |
+
- Twitter: [@rmayormartins](https://twitter.com/rmayormartins)
|
25 |
+
- GitHub: [https://github.com/rmayormartins](https://github.com/rmayormartins)
|
26 |
+
- my Radio Callsign (PU4MAY) Brazil
|
27 |
+
|
28 |
+
## Model Information
|
29 |
+
- **Model:** YOLOv5
|
30 |
+
- **Task:** Object Detection
|
31 |
+
- **Classes:** Cattle
|
32 |
+
|
33 |
+
## How to Use
|
34 |
+
1. Upload an image of cattle.
|
35 |
+
2. The model will detect and count the number of cattle in the image.
|
36 |
+
3. The output will display the image with bounding boxes around detected cattle and the total count.
|
37 |
+
|
38 |
+
## Example
|
39 |
+
You can use the provided example image to test the model.
|
40 |
+
|
41 |
+
## Installation
|
42 |
+
To install the necessary dependencies, run:
|
43 |
+
```bash
|
44 |
+
pip install -r requirements.txt
|
45 |
+
|
46 |
+
## License
|
47 |
+
|
48 |
+
This project is released under the ECL-2.0 license.
|
49 |
+
|
50 |
+
|
51 |
+
---
|
52 |
+
*Check out the configuration reference at [Hugging Face Spaces Config Reference](https://huggingface.co/docs/hub/spaces-config-reference).*
|
53 |
+
|
54 |
+
|
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# modelo
|
8 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='bestyolo5.pt')
|
9 |
+
|
10 |
+
def detect(img):
|
11 |
+
img_arr = np.array(img)
|
12 |
+
results = model(img_arr)
|
13 |
+
|
14 |
+
fig, ax = plt.subplots()
|
15 |
+
ax.imshow(img_arr)
|
16 |
+
|
17 |
+
cattle_count = 0
|
18 |
+
for *xyxy, conf, cls in results.xyxy[0].cpu().numpy():
|
19 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
20 |
+
label = model.names[int(cls)]
|
21 |
+
if label == 'cattle':
|
22 |
+
cattle_count += 1
|
23 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, color='red', linewidth=2))
|
24 |
+
ax.text(x1, y1, f'{label} {conf:.2f}', color='white', fontsize=8, bbox={'facecolor': 'red', 'alpha': 0.5})
|
25 |
+
|
26 |
+
plt.axis('off')
|
27 |
+
|
28 |
+
fig.canvas.draw()
|
29 |
+
pil_img = Image.fromarray(np.array(fig.canvas.renderer._renderer))
|
30 |
+
plt.close(fig)
|
31 |
+
|
32 |
+
return pil_img, cattle_count
|
33 |
+
|
34 |
+
# gradio
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=detect,
|
37 |
+
inputs=gr.Image(type="pil"),
|
38 |
+
outputs=[gr.Image(type="pil"), gr.Textbox(label="Number of Cattle Detected")],
|
39 |
+
title="YOLOv5 Cattle Counter",
|
40 |
+
description="Object detector trained to count cattle using YOLOv5.",
|
41 |
+
examples=[["example1.jpg"]]
|
42 |
+
)
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
iface.launch()
|
bestyolo5.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69283e3a5d8edeb906cdf04cbda320a7a542f191fd28302d4057a54d4ad57f70
|
3 |
+
size 14390952
|
example1.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.29.0
|
2 |
+
numpy
|
3 |
+
Pillow
|
4 |
+
torch
|
5 |
+
matplotlib
|
6 |
+
|
7 |
+
|
8 |
+
|