rmayormartins commited on
Commit
aa5f929
·
1 Parent(s): d6cc6b2

Adicionados app.py e requirements.txt; modificado README.md

Browse files
Files changed (3) hide show
  1. README.md +44 -7
  2. app.py +107 -0
  3. requirements.txt +5 -0
README.md CHANGED
@@ -1,13 +1,50 @@
1
  ---
2
- title: Sentiment Analysis Committee
3
- emoji: 📉
4
- colorFrom: green
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.12.0
8
  app_file: app.py
9
  pinned: false
10
- license: ecl-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: sentiment-analysis-committee
3
+ emoji: 👥
4
+ colorFrom: blue
5
+ colorTo: green
6
  sdk: gradio
7
+ sdk_version: "4.12.0"
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
+
13
+ # Sentiment Analysis Committee
14
+
15
+ A comprehensive sentiment analysis tool using multiple methods, including BERT (Base and Large), DistilBERT, SiEBERT, TextBlob, VADER, and AFINN.
16
+
17
+ ## How to Use
18
+
19
+ Enter text into the interface to receive sentiment analyses from various methods. The committee's decision is based on the majority of votes among the methods.
20
+
21
+ ## Technical Details
22
+
23
+ This project leverages various natural language processing models to evaluate the sentiment of entered text:
24
+
25
+ - **BERT Base and BERT Large**: Transformer-based models providing sentiment scores and labels. BERT Large is a larger variant of BERT with more layers, potentially offering more nuanced sentiment analysis.
26
+ - **DistilBERT**: A distilled version of BERT, optimized for speed and efficiency.
27
+ - **SiEBERT**: A RoBERTa-based model fine-tuned for sentiment analysis.
28
+ - **TextBlob**: Utilizes Naive Bayes classifiers, offering straightforward sentiment evaluations.
29
+ - **VADER**: Designed for social media and short texts, giving a compound sentiment score.
30
+ - **AFINN**: A lexical method assigning scores to words, indicating sentiment intensity.
31
+
32
+ The final decision of the committee is determined by a majority vote approach, providing a balanced sentiment analysis.
33
+
34
+ ## Additional Information
35
+
36
+ - Developed by Ramon Mayor Martins (2023)
37
+ - E-mail: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
38
+ - Homepage: [https://rmayormartins.github.io/](https://rmayormartins.github.io/)
39
+ - Twitter: [@rmayormartins](https://twitter.com/rmayormartins)
40
+ - GitHub: [https://github.com/rmayormartins](https://github.com/rmayormartins)
41
+
42
+ ## Notes
43
+
44
+ - The committee's decision is democratic, based on the majority vote from the utilized methods.
45
+ - The project is implemented in Python and hosted on Hugging Face Spaces.
46
+
47
+
48
+
49
+
50
+
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import gradio as gr
3
+ from textblob import TextBlob
4
+ import numpy as np
5
+ import nltk
6
+ from nltk.sentiment import SentimentIntensityAnalyzer
7
+ from afinn import Afinn
8
+
9
+
10
+ #VADER e AFINN
11
+ nltk.download('vader_lexicon')
12
+ vader = SentimentIntensityAnalyzer()
13
+ afinn = Afinn()
14
+
15
+ #Hugging Face
16
+ bert_model = pipeline("sentiment-analysis", model="bert-base-uncased")
17
+ #BERT Large
18
+ bert_large_model = pipeline("sentiment-analysis", model="bert-large-uncased")
19
+ distilbert_model = pipeline("sentiment-analysis", model="distilbert-base-uncased")
20
+ siebert_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
21
+
22
+
23
+ def normalize_score(score, range_min, range_max):
24
+ return (score - range_min) / (range_max - range_min)
25
+
26
+
27
+ def analyze_with_bert(text):
28
+ analysis = bert_model(text)
29
+ label, score = map_label(analysis[0]['label']), analysis[0]['score']
30
+ return label, score
31
+
32
+
33
+ def analyze_with_bert_large(text):
34
+ analysis = bert_large_model(text)
35
+ label, score = map_label(analysis[0]['label']), analysis[0]['score']
36
+ return label, score
37
+
38
+ def analyze_with_distilbert(text):
39
+ analysis = distilbert_model(text)
40
+ label, score = map_label(analysis[0]['label']), analysis[0]['score']
41
+ return label, score
42
+
43
+ def analyze_with_siebert(text):
44
+ analysis = siebert_model(text)
45
+ return analysis[0]['label'], analysis[0]['score']
46
+
47
+ def analyze_with_textblob(text):
48
+ analysis = TextBlob(text).sentiment
49
+ label = "POSITIVE" if analysis.polarity > 0 else "NEGATIVE" if analysis.polarity < 0 else "NEUTRAL"
50
+ normalized_score = normalize_score(analysis.polarity, -1, 1)
51
+ return label, normalized_score
52
+
53
+ def analyze_with_vader(text):
54
+ scores = vader.polarity_scores(text)
55
+ label = "POSITIVE" if scores['compound'] > 0.05 else "NEGATIVE" if scores['compound'] < -0.05 else "NEUTRAL"
56
+ normalized_score = normalize_score(scores['compound'], -1, 1)
57
+ return label, normalized_score
58
+
59
+ def analyze_with_afinn(text):
60
+ score = afinn.score(text)
61
+ label = "POSITIVE" if score > 0 else "NEGATIVE" if score < 0 else "NEUTRAL"
62
+ normalized_score = normalize_score(score, -5, 5)
63
+ return label, normalized_score
64
+
65
+ #mapeio BERT e DistilBERT
66
+ def map_label(label):
67
+ if label == "LABEL_0":
68
+ return "NEGATIVE"
69
+ elif label == "LABEL_1":
70
+ return "POSITIVE"
71
+ else:
72
+ return "NEUTRAL"
73
+
74
+
75
+ #Comite
76
+ def calculate_committee_decision(results):
77
+ #coto voto
78
+ vote_count = {"POSITIVE": 0, "NEGATIVE": 0, "NEUTRAL": 0}
79
+ for label, score in results.values():
80
+ vote_count[label] += 1
81
+
82
+ #maioria dos votos
83
+ final_label = max(vote_count, key=vote_count.get)
84
+ return final_label, vote_count[final_label] / len(results)
85
+
86
+
87
+
88
+
89
+ def analyze_text(text):
90
+ results = {
91
+ "BERT Base": analyze_with_bert(text),
92
+ "BERT Large": analyze_with_bert_large(text),
93
+ "DistilBERT": analyze_with_distilbert(text),
94
+ "SiEBERT": analyze_with_siebert(text),
95
+ "TextBlob": analyze_with_textblob(text),
96
+ "VADER": analyze_with_vader(text),
97
+ "AFINN": analyze_with_afinn(text)
98
+ }
99
+
100
+ final_label, vote_ratio = calculate_committee_decision(results)
101
+ results["Committee Decision"] = {"label": final_label, "vote_ratio": vote_ratio}
102
+ return results
103
+
104
+
105
+ #Gradio
106
+ iface = gr.Interface(fn=analyze_text, inputs="text", outputs="json")
107
+ iface.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ gradio
3
+ textblob
4
+ nltk
5
+ afinn