|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
import numpy as np |
|
import gradio as gr |
|
|
|
|
|
style_transfer_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') |
|
|
|
def load_image(image): |
|
|
|
image = image.astype(np.float32)[np.newaxis, ...] / 255. |
|
if image.shape[-1] == 4: |
|
image = image[..., :3] |
|
return image |
|
|
|
def style_transfer(content_image, style_image): |
|
|
|
content_image = load_image(content_image) |
|
style_image = load_image(style_image) |
|
|
|
|
|
stylized_image = style_transfer_model(tf.constant(content_image), tf.constant(style_image))[0] |
|
|
|
|
|
stylized_image = np.array(stylized_image * 255, np.uint8) |
|
|
|
|
|
stylized_image = np.squeeze(stylized_image) |
|
return stylized_image |
|
|
|
iface = gr.Interface( |
|
fn=style_transfer, |
|
inputs=["image", "image"], |
|
outputs="image" |
|
) |
|
|
|
iface.launch() |