rmayormartins
commited on
Commit
·
6cd28dd
1
Parent(s):
e453a8d
Subindo arquivos
Browse files- README.md +14 -7
- app.py +355 -141
- requirements.txt +12 -6
README.md
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: ecl-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: interactive-image-classifier
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: "4.12.0"
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
+
# Image Enhancer
|
13 |
+
|
14 |
+
Upload an image (.jpg, .png) per class, follow the interactive process for image classification, train, evaluate, predict and export
|
15 |
+
|
16 |
+
## Versão teste 1 (16/05)
|
17 |
+
|
18 |
+
- Ramon Mayor Martins
|
19 |
+
- E-mail: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
|
20 |
+
|
app.py
CHANGED
@@ -1,146 +1,360 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
}
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
import numpy as np
|
8 |
+
import io
|
|
|
9 |
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.optim as optim
|
12 |
+
from torchvision import datasets, transforms, models
|
13 |
+
from torch.utils.data import DataLoader, random_split
|
14 |
+
from PIL import Image
|
15 |
+
import joblib # .pkl
|
16 |
|
17 |
+
#
|
18 |
+
model_dict = {
|
19 |
+
'AlexNet': models.alexnet,
|
20 |
+
'ResNet18': models.resnet18,
|
21 |
+
'ResNet34': models.resnet34,
|
22 |
+
'ResNet50': models.resnet50,
|
23 |
+
'MobileNetV2': models.mobilenet_v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
+
|
26 |
+
#
|
27 |
+
model = None
|
28 |
+
train_loader = None
|
29 |
+
val_loader = None
|
30 |
+
test_loader = None
|
31 |
+
dataset_path = 'dataset'
|
32 |
+
class_dirs = []
|
33 |
+
test_dataset_path = 'test_dataset'
|
34 |
+
test_class_dirs = []
|
35 |
+
num_classes = 2 #
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
|
38 |
+
#
|
39 |
+
def setup_classes(num_classes_value):
|
40 |
+
global class_dirs, dataset_path, num_classes
|
41 |
+
|
42 |
+
num_classes = int(num_classes_value) #
|
43 |
+
#
|
44 |
+
if os.path.exists(dataset_path):
|
45 |
+
shutil.rmtree(dataset_path)
|
46 |
+
os.makedirs(dataset_path)
|
47 |
+
|
48 |
+
#
|
49 |
+
class_dirs = [os.path.join(dataset_path, f'class_{i}') for i in range(num_classes)]
|
50 |
+
for class_dir in class_dirs:
|
51 |
+
os.makedirs(class_dir)
|
52 |
+
|
53 |
+
return f"Criados {num_classes} diretórios para classes."
|
54 |
+
|
55 |
+
#
|
56 |
+
def upload_images(class_id, images):
|
57 |
+
class_dir = class_dirs[int(class_id)]
|
58 |
+
for image in images:
|
59 |
+
shutil.copy(image, class_dir)
|
60 |
+
return f"Imagens salvas na classe {class_id}."
|
61 |
+
|
62 |
+
#
|
63 |
+
def prepare_data(batch_size=32, resize=(224, 224)):
|
64 |
+
global train_loader, val_loader, test_loader, num_classes
|
65 |
+
|
66 |
+
#
|
67 |
+
transform = transforms.Compose([
|
68 |
+
transforms.Resize(resize),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
])
|
71 |
+
|
72 |
+
dataset = datasets.ImageFolder(dataset_path, transform=transform)
|
73 |
+
|
74 |
+
if len(dataset.classes) != num_classes:
|
75 |
+
return f"Erro: Número de classes detectadas ({len(dataset.classes)}) não corresponde ao número esperado ({num_classes}). Verifique suas imagens."
|
76 |
+
|
77 |
+
#
|
78 |
+
train_size = int(0.7 * len(dataset))
|
79 |
+
val_size = int(0.2 * len(dataset))
|
80 |
+
test_size = len(dataset) - train_size - val_size
|
81 |
+
train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])
|
82 |
+
|
83 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
84 |
+
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
85 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
86 |
+
|
87 |
+
return "Preparação dos dados concluída com sucesso."
|
88 |
+
|
89 |
+
#
|
90 |
+
def start_training(model_name, epochs, lr):
|
91 |
+
global model, train_loader, val_loader, device
|
92 |
+
|
93 |
+
if train_loader is None or val_loader is None:
|
94 |
+
return "Erro: Dados não preparados."
|
95 |
+
|
96 |
+
model = model_dict[model_name](pretrained=True)
|
97 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
98 |
+
model = model.to(device)
|
99 |
+
|
100 |
+
criterion = nn.CrossEntropyLoss()
|
101 |
+
optimizer = optim.Adam(model.parameters(), lr=float(lr))
|
102 |
+
|
103 |
+
for epoch in range(int(epochs)):
|
104 |
+
model.train()
|
105 |
+
running_loss = 0.0
|
106 |
+
for inputs, labels in train_loader:
|
107 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
108 |
+
optimizer.zero_grad()
|
109 |
+
outputs = model(inputs)
|
110 |
+
loss = criterion(outputs, labels)
|
111 |
+
loss.backward()
|
112 |
+
optimizer.step()
|
113 |
+
running_loss += loss.item()
|
114 |
+
|
115 |
+
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss/len(train_loader)}")
|
116 |
+
|
117 |
+
torch.save(model.state_dict(), 'modelo.pth')
|
118 |
+
return f"Treinamento concluído com sucesso. Modelo salvo."
|
119 |
+
|
120 |
+
#
|
121 |
+
def evaluate_model(loader):
|
122 |
+
global model, device, num_classes
|
123 |
+
|
124 |
+
if model is None:
|
125 |
+
return "Erro: Modelo não treinado."
|
126 |
+
|
127 |
+
if loader is None:
|
128 |
+
return "Erro: Conjunto de dados de teste não está preparado."
|
129 |
+
|
130 |
+
model.eval()
|
131 |
+
all_preds = []
|
132 |
+
all_labels = []
|
133 |
+
try:
|
134 |
+
with torch.no_grad():
|
135 |
+
for inputs, labels in loader:
|
136 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
137 |
+
outputs = model(inputs)
|
138 |
+
_, preds = torch.max(outputs, 1)
|
139 |
+
all_preds.extend(preds.cpu().numpy())
|
140 |
+
all_labels.extend(labels.cpu().numpy())
|
141 |
+
|
142 |
+
report = classification_report(all_labels, all_preds, labels=list(range(num_classes)), target_names=[f"class_{i}" for i in range(num_classes)], zero_division=0)
|
143 |
+
return report
|
144 |
+
except Exception as e:
|
145 |
+
return f"Erro durante a avaliação: {str(e)}"
|
146 |
+
|
147 |
+
#
|
148 |
+
def show_confusion_matrix(loader):
|
149 |
+
global model, device, num_classes
|
150 |
+
|
151 |
+
if model is None:
|
152 |
+
return "Erro: Modelo não treinado."
|
153 |
+
|
154 |
+
model.eval()
|
155 |
+
all_preds = []
|
156 |
+
all_labels = []
|
157 |
+
with torch.no_grad():
|
158 |
+
for inputs, labels in loader:
|
159 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
160 |
+
outputs = model(inputs)
|
161 |
+
_, preds = torch.max(outputs, 1)
|
162 |
+
all_preds.extend(preds.cpu().numpy())
|
163 |
+
all_labels.extend(labels.cpu().numpy())
|
164 |
+
|
165 |
+
cm = confusion_matrix(all_labels, all_preds, labels=list(range(num_classes)))
|
166 |
+
|
167 |
+
plt.figure(figsize=(6, 4.8))
|
168 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=[f"class_{i}" for i in range(num_classes)], yticklabels=[f"class_{i}" for i in range(num_classes)])
|
169 |
+
plt.xlabel('Predictions')
|
170 |
+
plt.ylabel('Actuals')
|
171 |
+
buf = io.BytesIO()
|
172 |
+
plt.savefig(buf, format='png')
|
173 |
+
plt.close()
|
174 |
+
buf.seek(0)
|
175 |
+
return Image.open(buf)
|
176 |
+
|
177 |
+
#
|
178 |
+
def predict_images(images):
|
179 |
+
global model, device, num_classes
|
180 |
+
|
181 |
+
if model is None:
|
182 |
+
return "Erro: Modelo não treinado."
|
183 |
+
|
184 |
+
transform = transforms.Compose([
|
185 |
+
transforms.Resize((224, 224)),
|
186 |
+
transforms.ToTensor(),
|
187 |
+
])
|
188 |
+
|
189 |
+
model.eval()
|
190 |
+
results = []
|
191 |
+
|
192 |
+
for image in images:
|
193 |
+
try:
|
194 |
+
img = transform(Image.open(image)).unsqueeze(0).to(device)
|
195 |
+
with torch.no_grad():
|
196 |
+
outputs = model(img)
|
197 |
+
_, preds = torch.max(outputs, 1)
|
198 |
+
predicted_class = preds.item()
|
199 |
+
results.append(f"Imagem {os.path.basename(image)} - Classe prevista: class_{predicted_class}")
|
200 |
+
except Exception as e:
|
201 |
+
results.append(f"Erro ao processar a imagem {image}: {str(e)}")
|
202 |
+
|
203 |
+
return results
|
204 |
+
|
205 |
+
#
|
206 |
+
def export_model(format):
|
207 |
+
global model
|
208 |
+
|
209 |
+
if model is None:
|
210 |
+
return "Erro: Modelo não treinado."
|
211 |
+
|
212 |
+
file_path = f"modelo_exportado.{format}"
|
213 |
+
if format == "pth":
|
214 |
+
torch.save(model.state_dict(), file_path)
|
215 |
+
elif format == "onnx":
|
216 |
+
try:
|
217 |
+
dummy_input = torch.randn(1, 3, 224, 224).to(device)
|
218 |
+
torch.onnx.export(model, dummy_input, file_path, export_params=True, opset_version=10, input_names=['input'], output_names=['output'])
|
219 |
+
except Exception as e:
|
220 |
+
return f"Erro ao exportar para ONNX: {str(e)}"
|
221 |
+
elif format == "pkl":
|
222 |
+
joblib.dump(model, file_path)
|
223 |
+
else:
|
224 |
+
return f"Formato {format} não suportado."
|
225 |
+
|
226 |
+
return f"Modelo exportado com sucesso para {file_path}"
|
227 |
+
|
228 |
+
#
|
229 |
+
def setup_test_classes():
|
230 |
+
global test_class_dirs, test_dataset_path
|
231 |
+
|
232 |
+
if os.path.exists(test_dataset_path):
|
233 |
+
shutil.rmtree(test_dataset_path)
|
234 |
+
os.makedirs(test_dataset_path)
|
235 |
+
|
236 |
+
#
|
237 |
+
test_class_dirs = [os.path.join(test_dataset_path, f'class_{i}') for i in range(num_classes)]
|
238 |
+
for class_dir in test_class_dirs:
|
239 |
+
os.makedirs(class_dir)
|
240 |
+
|
241 |
+
return f"Criados {num_classes} diretórios para classes de teste."
|
242 |
+
|
243 |
+
#
|
244 |
+
def upload_test_images(class_id, images):
|
245 |
+
class_dir = test_class_dirs[int(class_id)]
|
246 |
+
for image in images:
|
247 |
+
shutil.copy(image, class_dir)
|
248 |
+
return f"Imagens de teste salvas na classe {class_id}."
|
249 |
+
|
250 |
+
#
|
251 |
+
def prepare_test_data(batch_size=32, resize=(224, 224)):
|
252 |
+
global test_loader, num_classes
|
253 |
+
|
254 |
+
transform = transforms.Compose([
|
255 |
+
transforms.Resize(resize),
|
256 |
+
transforms.ToTensor(),
|
257 |
+
])
|
258 |
+
|
259 |
+
test_dataset = datasets.ImageFolder(test_dataset_path, transform=transform)
|
260 |
+
|
261 |
+
if len(test_dataset.classes) != num_classes:
|
262 |
+
return f"Erro: Número de classes detectadas ({len(test_dataset.classes)}) não corresponde ao número esperado ({num_classes}). Verifique suas imagens."
|
263 |
+
|
264 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
265 |
+
|
266 |
+
return "Preparação dos dados de teste concluída com sucesso."
|
267 |
+
|
268 |
+
#
|
269 |
+
def main():
|
270 |
+
with gr.Blocks() as demo:
|
271 |
+
gr.Markdown("# Image Classification Training")
|
272 |
+
|
273 |
+
with gr.Tab("Configurar Classes"):
|
274 |
+
num_classes_input = gr.Number(label="Número de Classes", value=2, precision=0)
|
275 |
+
setup_button = gr.Button("Configurar Classes")
|
276 |
+
setup_output = gr.Textbox()
|
277 |
+
setup_button.click(setup_classes, inputs=num_classes_input, outputs=setup_output)
|
278 |
+
|
279 |
+
with gr.Tab("Upload de Imagens"):
|
280 |
+
upload_inputs = []
|
281 |
+
for i in range(num_classes):
|
282 |
+
with gr.Column():
|
283 |
+
gr.Markdown(f"### Classe {i}")
|
284 |
+
class_id = gr.Number(label=f"ID da Classe {i}", value=i, precision=0)
|
285 |
+
images = gr.File(label="Upload de Imagens", file_count="multiple", type="filepath")
|
286 |
+
upload_button = gr.Button("Upload")
|
287 |
+
upload_output = gr.Textbox()
|
288 |
+
|
289 |
+
upload_inputs.append((class_id, images, upload_button, upload_output))
|
290 |
+
upload_button.click(upload_images, inputs=[class_id, images], outputs=upload_output)
|
291 |
+
|
292 |
+
with gr.Tab("Preparação de Dados"):
|
293 |
+
batch_size = gr.Number(label="Tamanho do Batch", value=32)
|
294 |
+
resize = gr.Textbox(label="Resize (Ex: 224,224)", value="224,224")
|
295 |
+
prepare_button = gr.Button("Preparar Dados")
|
296 |
+
prepare_output = gr.Textbox()
|
297 |
+
prepare_button.click(lambda batch_size, resize: prepare_data(batch_size=batch_size, resize=tuple(map(int, resize.split(',')))), inputs=[batch_size, resize], outputs=prepare_output)
|
298 |
+
|
299 |
+
with gr.Tab("Treinamento"):
|
300 |
+
model_name = gr.Dropdown(label="Modelo", choices=list(model_dict.keys()))
|
301 |
+
epochs = gr.Number(label="Épocas", value=30)
|
302 |
+
lr = gr.Number(label="Taxa de Aprendizado", value=0.001)
|
303 |
+
train_button = gr.Button("Iniciar Treinamento")
|
304 |
+
train_output = gr.Textbox()
|
305 |
+
train_button.click(start_training, inputs=[model_name, epochs, lr], outputs=train_output)
|
306 |
+
|
307 |
+
with gr.Tab("Avaliação do Modelo"):
|
308 |
+
eval_button = gr.Button("Avaliar Modelo")
|
309 |
+
eval_output = gr.Textbox()
|
310 |
+
eval_button.click(lambda: evaluate_model(test_loader), outputs=eval_output)
|
311 |
+
|
312 |
+
cm_button = gr.Button("Mostrar Matriz de Confusão")
|
313 |
+
cm_output = gr.Image()
|
314 |
+
cm_button.click(lambda: show_confusion_matrix(test_loader), outputs=cm_output)
|
315 |
+
|
316 |
+
with gr.Tab("Predição e Avaliação"):
|
317 |
+
predict_images_input = gr.File(label="Upload de Imagens para Predição", file_count="multiple", type="filepath")
|
318 |
+
predict_button = gr.Button("Predizer")
|
319 |
+
predict_output = gr.Textbox()
|
320 |
+
predict_button.click(predict_images, inputs=predict_images_input, outputs=predict_output)
|
321 |
+
|
322 |
+
gr.Markdown("### Upload de Imagens de Teste")
|
323 |
+
setup_test_button = gr.Button("Configurar Diretórios de Teste")
|
324 |
+
setup_test_output = gr.Textbox()
|
325 |
+
setup_test_button.click(setup_test_classes, outputs=setup_test_output)
|
326 |
+
|
327 |
+
upload_test_inputs = []
|
328 |
+
for i in range(num_classes):
|
329 |
+
with gr.Column():
|
330 |
+
gr.Markdown(f"### Classe de Teste {i}")
|
331 |
+
test_class_id = gr.Number(label=f"ID da Classe {i}", value=i, precision=0)
|
332 |
+
test_images = gr.File(label="Upload de Imagens de Teste", file_count="multiple", type="filepath")
|
333 |
+
upload_test_button = gr.Button("Upload Imagens de Teste")
|
334 |
+
upload_test_output = gr.Textbox()
|
335 |
+
|
336 |
+
upload_test_inputs.append((test_class_id, test_images, upload_test_button, upload_test_output))
|
337 |
+
upload_test_button.click(upload_test_images, inputs=[test_class_id, test_images], outputs=upload_test_output)
|
338 |
+
|
339 |
+
prepare_test_button = gr.Button("Preparar Dados de Teste")
|
340 |
+
prepare_test_output = gr.Textbox()
|
341 |
+
prepare_test_button.click(lambda batch_size, resize: prepare_test_data(batch_size=batch_size, resize=tuple(map(int, resize.split(',')))), inputs=[batch_size, resize], outputs=prepare_test_output)
|
342 |
+
|
343 |
+
eval_test_button = gr.Button("Avaliar Conjunto de Teste")
|
344 |
+
eval_test_output = gr.Textbox()
|
345 |
+
eval_test_button.click(lambda: evaluate_model(test_loader), outputs=eval_test_output)
|
346 |
+
|
347 |
+
cm_test_button = gr.Button("Mostrar Matriz de Confusão do Conjunto de Teste")
|
348 |
+
cm_test_output = gr.Image()
|
349 |
+
cm_test_button.click(lambda: show_confusion_matrix(test_loader), outputs=cm_test_output)
|
350 |
+
|
351 |
+
with gr.Tab("Exportação"):
|
352 |
+
export_format = gr.Radio(label="Formato", choices=["pth", "onnx", "pkl"])
|
353 |
+
export_button = gr.Button("Exportar Modelo")
|
354 |
+
export_output = gr.Textbox()
|
355 |
+
export_button.click(export_model, inputs=export_format, outputs=export_output)
|
356 |
+
|
357 |
+
demo.launch()
|
358 |
+
|
359 |
+
if __name__ == "__main__":
|
360 |
+
main()
|
requirements.txt
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.11.0
|
2 |
+
torchvision==0.12.0
|
3 |
+
scikit-learn==0.24.2
|
4 |
+
matplotlib==3.4.2
|
5 |
+
seaborn==0.11.1
|
6 |
+
numpy==1.21.0
|
7 |
+
Pillow==8.2.0
|
8 |
+
gradio==4.12.0
|
9 |
+
joblib==1.0.1
|
10 |
+
onnx==1.10.1
|
11 |
+
onnx-tf==1.8.0
|
12 |
+
tensorflow==2.16.0
|