ArnoChen
commited on
Commit
·
e06bbc8
1
Parent(s):
b6d6660
add namespace prefix to storage namespaces
Browse files- lightrag/api/lightrag_server.py +15 -1
- lightrag/api/ollama_api.py +1 -1
- lightrag/kg/mongo_impl.py +2 -2
- lightrag/kg/oracle_impl.py +10 -8
- lightrag/kg/postgres_impl.py +14 -12
- lightrag/kg/tidb_impl.py +9 -7
- lightrag/lightrag.py +18 -17
lightrag/api/lightrag_server.py
CHANGED
|
@@ -40,7 +40,7 @@ from .ollama_api import (
|
|
| 40 |
from .ollama_api import ollama_server_infos
|
| 41 |
|
| 42 |
# Load environment variables
|
| 43 |
-
load_dotenv()
|
| 44 |
|
| 45 |
|
| 46 |
class RAGStorageConfig:
|
|
@@ -532,6 +532,16 @@ def parse_args() -> argparse.Namespace:
|
|
| 532 |
help="Number of conversation history turns to include (default: from env or 3)",
|
| 533 |
)
|
| 534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
args = parser.parse_args()
|
| 536 |
|
| 537 |
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
|
@@ -861,6 +871,8 @@ def create_app(args):
|
|
| 861 |
"similarity_threshold": 0.95,
|
| 862 |
"use_llm_check": False,
|
| 863 |
},
|
|
|
|
|
|
|
| 864 |
)
|
| 865 |
else:
|
| 866 |
rag = LightRAG(
|
|
@@ -890,6 +902,8 @@ def create_app(args):
|
|
| 890 |
"similarity_threshold": 0.95,
|
| 891 |
"use_llm_check": False,
|
| 892 |
},
|
|
|
|
|
|
|
| 893 |
)
|
| 894 |
|
| 895 |
async def index_file(file_path: Union[str, Path]) -> None:
|
|
|
|
| 40 |
from .ollama_api import ollama_server_infos
|
| 41 |
|
| 42 |
# Load environment variables
|
| 43 |
+
load_dotenv(override=True)
|
| 44 |
|
| 45 |
|
| 46 |
class RAGStorageConfig:
|
|
|
|
| 532 |
help="Number of conversation history turns to include (default: from env or 3)",
|
| 533 |
)
|
| 534 |
|
| 535 |
+
# Namespace
|
| 536 |
+
parser.add_argument(
|
| 537 |
+
"--namespace-prefix",
|
| 538 |
+
type=str,
|
| 539 |
+
default=get_env_value(
|
| 540 |
+
"NAMESPACE_PREFIX", ""
|
| 541 |
+
),
|
| 542 |
+
help="Prefix of the namespace",
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
args = parser.parse_args()
|
| 546 |
|
| 547 |
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
|
|
|
| 871 |
"similarity_threshold": 0.95,
|
| 872 |
"use_llm_check": False,
|
| 873 |
},
|
| 874 |
+
log_level=args.log_level,
|
| 875 |
+
namespace_prefix=args.namespace_prefix,
|
| 876 |
)
|
| 877 |
else:
|
| 878 |
rag = LightRAG(
|
|
|
|
| 902 |
"similarity_threshold": 0.95,
|
| 903 |
"use_llm_check": False,
|
| 904 |
},
|
| 905 |
+
log_level=args.log_level,
|
| 906 |
+
namespace_prefix=args.namespace_prefix,
|
| 907 |
)
|
| 908 |
|
| 909 |
async def index_file(file_path: Union[str, Path]) -> None:
|
lightrag/api/ollama_api.py
CHANGED
|
@@ -15,7 +15,7 @@ from dotenv import load_dotenv
|
|
| 15 |
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
-
load_dotenv()
|
| 19 |
|
| 20 |
|
| 21 |
class OllamaServerInfos:
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
+
load_dotenv(override=True)
|
| 19 |
|
| 20 |
|
| 21 |
class OllamaServerInfos:
|
lightrag/kg/mongo_impl.py
CHANGED
|
@@ -52,7 +52,7 @@ class MongoKVStorage(BaseKVStorage):
|
|
| 52 |
return set([s for s in data if s not in existing_ids])
|
| 53 |
|
| 54 |
async def upsert(self, data: dict[str, dict]):
|
| 55 |
-
if self.namespace
|
| 56 |
for mode, items in data.items():
|
| 57 |
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
| 58 |
key = f"{mode}_{k}"
|
|
@@ -69,7 +69,7 @@ class MongoKVStorage(BaseKVStorage):
|
|
| 69 |
return data
|
| 70 |
|
| 71 |
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
| 72 |
-
if "llm_response_cache"
|
| 73 |
res = {}
|
| 74 |
v = self._data.find_one({"_id": mode + "_" + id})
|
| 75 |
if v:
|
|
|
|
| 52 |
return set([s for s in data if s not in existing_ids])
|
| 53 |
|
| 54 |
async def upsert(self, data: dict[str, dict]):
|
| 55 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 56 |
for mode, items in data.items():
|
| 57 |
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
| 58 |
key = f"{mode}_{k}"
|
|
|
|
| 69 |
return data
|
| 70 |
|
| 71 |
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
| 72 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 73 |
res = {}
|
| 74 |
v = self._data.find_one({"_id": mode + "_" + id})
|
| 75 |
if v:
|
lightrag/kg/oracle_impl.py
CHANGED
|
@@ -185,7 +185,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 185 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
| 186 |
params = {"workspace": self.db.workspace, "id": id}
|
| 187 |
# print("get_by_id:"+SQL)
|
| 188 |
-
if "llm_response_cache"
|
| 189 |
array_res = await self.db.query(SQL, params, multirows=True)
|
| 190 |
res = {}
|
| 191 |
for row in array_res:
|
|
@@ -201,7 +201,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 201 |
"""Specifically for llm_response_cache."""
|
| 202 |
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
| 203 |
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
| 204 |
-
if "llm_response_cache"
|
| 205 |
array_res = await self.db.query(SQL, params, multirows=True)
|
| 206 |
res = {}
|
| 207 |
for row in array_res:
|
|
@@ -218,7 +218,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 218 |
params = {"workspace": self.db.workspace}
|
| 219 |
# print("get_by_ids:"+SQL)
|
| 220 |
res = await self.db.query(SQL, params, multirows=True)
|
| 221 |
-
if "llm_response_cache"
|
| 222 |
modes = set()
|
| 223 |
dict_res: dict[str, dict] = {}
|
| 224 |
for row in res:
|
|
@@ -269,7 +269,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 269 |
|
| 270 |
################ INSERT METHODS ################
|
| 271 |
async def upsert(self, data: dict[str, dict]):
|
| 272 |
-
if self.namespace
|
| 273 |
list_data = [
|
| 274 |
{
|
| 275 |
"id": k,
|
|
@@ -302,7 +302,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 302 |
"status": item["status"],
|
| 303 |
}
|
| 304 |
await self.db.execute(merge_sql, _data)
|
| 305 |
-
if self.namespace
|
| 306 |
for k, v in data.items():
|
| 307 |
# values.clear()
|
| 308 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
|
@@ -313,7 +313,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 313 |
}
|
| 314 |
await self.db.execute(merge_sql, _data)
|
| 315 |
|
| 316 |
-
if self.namespace
|
| 317 |
for mode, items in data.items():
|
| 318 |
for k, v in items.items():
|
| 319 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
@@ -334,8 +334,10 @@ class OracleKVStorage(BaseKVStorage):
|
|
| 334 |
await self.db.execute(SQL, params)
|
| 335 |
|
| 336 |
async def index_done_callback(self):
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
| 339 |
|
| 340 |
|
| 341 |
@dataclass
|
|
|
|
| 185 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
| 186 |
params = {"workspace": self.db.workspace, "id": id}
|
| 187 |
# print("get_by_id:"+SQL)
|
| 188 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 189 |
array_res = await self.db.query(SQL, params, multirows=True)
|
| 190 |
res = {}
|
| 191 |
for row in array_res:
|
|
|
|
| 201 |
"""Specifically for llm_response_cache."""
|
| 202 |
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
| 203 |
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
| 204 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 205 |
array_res = await self.db.query(SQL, params, multirows=True)
|
| 206 |
res = {}
|
| 207 |
for row in array_res:
|
|
|
|
| 218 |
params = {"workspace": self.db.workspace}
|
| 219 |
# print("get_by_ids:"+SQL)
|
| 220 |
res = await self.db.query(SQL, params, multirows=True)
|
| 221 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 222 |
modes = set()
|
| 223 |
dict_res: dict[str, dict] = {}
|
| 224 |
for row in res:
|
|
|
|
| 269 |
|
| 270 |
################ INSERT METHODS ################
|
| 271 |
async def upsert(self, data: dict[str, dict]):
|
| 272 |
+
if self.namespace.endswith("text_chunks"):
|
| 273 |
list_data = [
|
| 274 |
{
|
| 275 |
"id": k,
|
|
|
|
| 302 |
"status": item["status"],
|
| 303 |
}
|
| 304 |
await self.db.execute(merge_sql, _data)
|
| 305 |
+
if self.namespace.endswith("full_docs"):
|
| 306 |
for k, v in data.items():
|
| 307 |
# values.clear()
|
| 308 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
|
|
|
| 313 |
}
|
| 314 |
await self.db.execute(merge_sql, _data)
|
| 315 |
|
| 316 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 317 |
for mode, items in data.items():
|
| 318 |
for k, v in items.items():
|
| 319 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
|
|
| 334 |
await self.db.execute(SQL, params)
|
| 335 |
|
| 336 |
async def index_done_callback(self):
|
| 337 |
+
for n in ("full_docs", "text_chunks"):
|
| 338 |
+
if self.namespace.endswith(n):
|
| 339 |
+
logger.info("full doc and chunk data had been saved into oracle db!")
|
| 340 |
+
break
|
| 341 |
|
| 342 |
|
| 343 |
@dataclass
|
lightrag/kg/postgres_impl.py
CHANGED
|
@@ -187,7 +187,7 @@ class PGKVStorage(BaseKVStorage):
|
|
| 187 |
"""Get doc_full data by id."""
|
| 188 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
| 189 |
params = {"workspace": self.db.workspace, "id": id}
|
| 190 |
-
if "llm_response_cache"
|
| 191 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 192 |
res = {}
|
| 193 |
for row in array_res:
|
|
@@ -203,7 +203,7 @@ class PGKVStorage(BaseKVStorage):
|
|
| 203 |
"""Specifically for llm_response_cache."""
|
| 204 |
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
| 205 |
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
| 206 |
-
if "llm_response_cache"
|
| 207 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 208 |
res = {}
|
| 209 |
for row in array_res:
|
|
@@ -219,7 +219,7 @@ class PGKVStorage(BaseKVStorage):
|
|
| 219 |
ids=",".join([f"'{id}'" for id in ids])
|
| 220 |
)
|
| 221 |
params = {"workspace": self.db.workspace}
|
| 222 |
-
if "llm_response_cache"
|
| 223 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 224 |
modes = set()
|
| 225 |
dict_res: dict[str, dict] = {}
|
|
@@ -239,7 +239,7 @@ class PGKVStorage(BaseKVStorage):
|
|
| 239 |
return None
|
| 240 |
|
| 241 |
async def all_keys(self) -> list[dict]:
|
| 242 |
-
if "llm_response_cache"
|
| 243 |
sql = "select workspace,mode,id from lightrag_llm_cache"
|
| 244 |
res = await self.db.query(sql, multirows=True)
|
| 245 |
return res
|
|
@@ -270,9 +270,9 @@ class PGKVStorage(BaseKVStorage):
|
|
| 270 |
|
| 271 |
################ INSERT METHODS ################
|
| 272 |
async def upsert(self, data: Dict[str, dict]):
|
| 273 |
-
if self.namespace
|
| 274 |
pass
|
| 275 |
-
elif self.namespace
|
| 276 |
for k, v in data.items():
|
| 277 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
| 278 |
_data = {
|
|
@@ -281,7 +281,7 @@ class PGKVStorage(BaseKVStorage):
|
|
| 281 |
"workspace": self.db.workspace,
|
| 282 |
}
|
| 283 |
await self.db.execute(upsert_sql, _data)
|
| 284 |
-
elif self.namespace
|
| 285 |
for mode, items in data.items():
|
| 286 |
for k, v in items.items():
|
| 287 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
@@ -296,8 +296,10 @@ class PGKVStorage(BaseKVStorage):
|
|
| 296 |
await self.db.execute(upsert_sql, _data)
|
| 297 |
|
| 298 |
async def index_done_callback(self):
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
| 301 |
|
| 302 |
|
| 303 |
@dataclass
|
|
@@ -389,11 +391,11 @@ class PGVectorStorage(BaseVectorStorage):
|
|
| 389 |
for i, d in enumerate(list_data):
|
| 390 |
d["__vector__"] = embeddings[i]
|
| 391 |
for item in list_data:
|
| 392 |
-
if self.namespace
|
| 393 |
upsert_sql, data = self._upsert_chunks(item)
|
| 394 |
-
elif self.namespace
|
| 395 |
upsert_sql, data = self._upsert_entities(item)
|
| 396 |
-
elif self.namespace
|
| 397 |
upsert_sql, data = self._upsert_relationships(item)
|
| 398 |
else:
|
| 399 |
raise ValueError(f"{self.namespace} is not supported")
|
|
|
|
| 187 |
"""Get doc_full data by id."""
|
| 188 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
| 189 |
params = {"workspace": self.db.workspace, "id": id}
|
| 190 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 191 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 192 |
res = {}
|
| 193 |
for row in array_res:
|
|
|
|
| 203 |
"""Specifically for llm_response_cache."""
|
| 204 |
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
| 205 |
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
| 206 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 207 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 208 |
res = {}
|
| 209 |
for row in array_res:
|
|
|
|
| 219 |
ids=",".join([f"'{id}'" for id in ids])
|
| 220 |
)
|
| 221 |
params = {"workspace": self.db.workspace}
|
| 222 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 223 |
array_res = await self.db.query(sql, params, multirows=True)
|
| 224 |
modes = set()
|
| 225 |
dict_res: dict[str, dict] = {}
|
|
|
|
| 239 |
return None
|
| 240 |
|
| 241 |
async def all_keys(self) -> list[dict]:
|
| 242 |
+
if self.namespace.endswith("llm_response_cache"):
|
| 243 |
sql = "select workspace,mode,id from lightrag_llm_cache"
|
| 244 |
res = await self.db.query(sql, multirows=True)
|
| 245 |
return res
|
|
|
|
| 270 |
|
| 271 |
################ INSERT METHODS ################
|
| 272 |
async def upsert(self, data: Dict[str, dict]):
|
| 273 |
+
if self.namespace.endswith("text_chunks"):
|
| 274 |
pass
|
| 275 |
+
elif self.namespace.endswith("full_docs"):
|
| 276 |
for k, v in data.items():
|
| 277 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
| 278 |
_data = {
|
|
|
|
| 281 |
"workspace": self.db.workspace,
|
| 282 |
}
|
| 283 |
await self.db.execute(upsert_sql, _data)
|
| 284 |
+
elif self.namespace.endswith("llm_response_cache"):
|
| 285 |
for mode, items in data.items():
|
| 286 |
for k, v in items.items():
|
| 287 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
|
|
| 296 |
await self.db.execute(upsert_sql, _data)
|
| 297 |
|
| 298 |
async def index_done_callback(self):
|
| 299 |
+
for n in ("full_docs", "text_chunks"):
|
| 300 |
+
if self.namespace.endswith(n):
|
| 301 |
+
logger.info("full doc and chunk data had been saved into postgresql db!")
|
| 302 |
+
break
|
| 303 |
|
| 304 |
|
| 305 |
@dataclass
|
|
|
|
| 391 |
for i, d in enumerate(list_data):
|
| 392 |
d["__vector__"] = embeddings[i]
|
| 393 |
for item in list_data:
|
| 394 |
+
if self.namespace.endswith("chunks"):
|
| 395 |
upsert_sql, data = self._upsert_chunks(item)
|
| 396 |
+
elif self.namespace.endswith("entities"):
|
| 397 |
upsert_sql, data = self._upsert_entities(item)
|
| 398 |
+
elif self.namespace.endswith("relationships"):
|
| 399 |
upsert_sql, data = self._upsert_relationships(item)
|
| 400 |
else:
|
| 401 |
raise ValueError(f"{self.namespace} is not supported")
|
lightrag/kg/tidb_impl.py
CHANGED
|
@@ -160,7 +160,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
| 160 |
async def upsert(self, data: dict[str, dict]):
|
| 161 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
| 162 |
self._data.update(left_data)
|
| 163 |
-
if self.namespace
|
| 164 |
list_data = [
|
| 165 |
{
|
| 166 |
"__id__": k,
|
|
@@ -196,7 +196,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
| 196 |
)
|
| 197 |
await self.db.execute(merge_sql, data)
|
| 198 |
|
| 199 |
-
if self.namespace
|
| 200 |
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
| 201 |
data = []
|
| 202 |
for k, v in self._data.items():
|
|
@@ -211,8 +211,10 @@ class TiDBKVStorage(BaseKVStorage):
|
|
| 211 |
return left_data
|
| 212 |
|
| 213 |
async def index_done_callback(self):
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
|
| 217 |
|
| 218 |
@dataclass
|
|
@@ -258,7 +260,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
| 258 |
if not len(data):
|
| 259 |
logger.warning("You insert an empty data to vector DB")
|
| 260 |
return []
|
| 261 |
-
if self.namespace
|
| 262 |
return []
|
| 263 |
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
| 264 |
|
|
@@ -288,7 +290,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
| 288 |
for i, d in enumerate(list_data):
|
| 289 |
d["content_vector"] = embeddings[i]
|
| 290 |
|
| 291 |
-
if self.namespace
|
| 292 |
data = []
|
| 293 |
for item in list_data:
|
| 294 |
param = {
|
|
@@ -309,7 +311,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
| 309 |
merge_sql = SQL_TEMPLATES["insert_entity"]
|
| 310 |
await self.db.execute(merge_sql, data)
|
| 311 |
|
| 312 |
-
elif self.namespace
|
| 313 |
data = []
|
| 314 |
for item in list_data:
|
| 315 |
param = {
|
|
|
|
| 160 |
async def upsert(self, data: dict[str, dict]):
|
| 161 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
| 162 |
self._data.update(left_data)
|
| 163 |
+
if self.namespace.endswith("text_chunks"):
|
| 164 |
list_data = [
|
| 165 |
{
|
| 166 |
"__id__": k,
|
|
|
|
| 196 |
)
|
| 197 |
await self.db.execute(merge_sql, data)
|
| 198 |
|
| 199 |
+
if self.namespace.endswith("full_docs"):
|
| 200 |
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
| 201 |
data = []
|
| 202 |
for k, v in self._data.items():
|
|
|
|
| 211 |
return left_data
|
| 212 |
|
| 213 |
async def index_done_callback(self):
|
| 214 |
+
for n in ("full_docs", "text_chunks"):
|
| 215 |
+
if self.namespace.endswith(n):
|
| 216 |
+
logger.info("full doc and chunk data had been saved into TiDB db!")
|
| 217 |
+
break
|
| 218 |
|
| 219 |
|
| 220 |
@dataclass
|
|
|
|
| 260 |
if not len(data):
|
| 261 |
logger.warning("You insert an empty data to vector DB")
|
| 262 |
return []
|
| 263 |
+
if self.namespace.endswith("chunks"):
|
| 264 |
return []
|
| 265 |
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
| 266 |
|
|
|
|
| 290 |
for i, d in enumerate(list_data):
|
| 291 |
d["content_vector"] = embeddings[i]
|
| 292 |
|
| 293 |
+
if self.namespace.endswith("entities"):
|
| 294 |
data = []
|
| 295 |
for item in list_data:
|
| 296 |
param = {
|
|
|
|
| 311 |
merge_sql = SQL_TEMPLATES["insert_entity"]
|
| 312 |
await self.db.execute(merge_sql, data)
|
| 313 |
|
| 314 |
+
elif self.namespace.endswith("relationships"):
|
| 315 |
data = []
|
| 316 |
for item in list_data:
|
| 317 |
param = {
|
lightrag/lightrag.py
CHANGED
|
@@ -167,6 +167,7 @@ class LightRAG:
|
|
| 167 |
|
| 168 |
# storage
|
| 169 |
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
|
|
|
| 170 |
|
| 171 |
enable_llm_cache: bool = True
|
| 172 |
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
|
|
@@ -228,12 +229,12 @@ class LightRAG:
|
|
| 228 |
)
|
| 229 |
|
| 230 |
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
| 231 |
-
namespace="json_doc_status_storage",
|
| 232 |
embedding_func=None,
|
| 233 |
)
|
| 234 |
|
| 235 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
| 236 |
-
namespace="llm_response_cache",
|
| 237 |
embedding_func=self.embedding_func,
|
| 238 |
)
|
| 239 |
|
|
@@ -241,15 +242,15 @@ class LightRAG:
|
|
| 241 |
# add embedding func by walter
|
| 242 |
####
|
| 243 |
self.full_docs = self.key_string_value_json_storage_cls(
|
| 244 |
-
namespace="full_docs",
|
| 245 |
embedding_func=self.embedding_func,
|
| 246 |
)
|
| 247 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
| 248 |
-
namespace="text_chunks",
|
| 249 |
embedding_func=self.embedding_func,
|
| 250 |
)
|
| 251 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
| 252 |
-
namespace="chunk_entity_relation",
|
| 253 |
embedding_func=self.embedding_func,
|
| 254 |
)
|
| 255 |
####
|
|
@@ -257,17 +258,17 @@ class LightRAG:
|
|
| 257 |
####
|
| 258 |
|
| 259 |
self.entities_vdb = self.vector_db_storage_cls(
|
| 260 |
-
namespace="entities",
|
| 261 |
embedding_func=self.embedding_func,
|
| 262 |
meta_fields={"entity_name"},
|
| 263 |
)
|
| 264 |
self.relationships_vdb = self.vector_db_storage_cls(
|
| 265 |
-
namespace="relationships",
|
| 266 |
embedding_func=self.embedding_func,
|
| 267 |
meta_fields={"src_id", "tgt_id"},
|
| 268 |
)
|
| 269 |
self.chunks_vdb = self.vector_db_storage_cls(
|
| 270 |
-
namespace="chunks",
|
| 271 |
embedding_func=self.embedding_func,
|
| 272 |
)
|
| 273 |
|
|
@@ -277,7 +278,7 @@ class LightRAG:
|
|
| 277 |
hashing_kv = self.llm_response_cache
|
| 278 |
else:
|
| 279 |
hashing_kv = self.key_string_value_json_storage_cls(
|
| 280 |
-
namespace="llm_response_cache",
|
| 281 |
embedding_func=self.embedding_func,
|
| 282 |
)
|
| 283 |
|
|
@@ -292,7 +293,7 @@ class LightRAG:
|
|
| 292 |
# Initialize document status storage
|
| 293 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
| 294 |
self.doc_status = self.doc_status_storage_cls(
|
| 295 |
-
namespace="doc_status",
|
| 296 |
global_config=global_config,
|
| 297 |
embedding_func=None,
|
| 298 |
)
|
|
@@ -928,7 +929,7 @@ class LightRAG:
|
|
| 928 |
if self.llm_response_cache
|
| 929 |
and hasattr(self.llm_response_cache, "global_config")
|
| 930 |
else self.key_string_value_json_storage_cls(
|
| 931 |
-
namespace="llm_response_cache",
|
| 932 |
global_config=asdict(self),
|
| 933 |
embedding_func=self.embedding_func,
|
| 934 |
),
|
|
@@ -945,7 +946,7 @@ class LightRAG:
|
|
| 945 |
if self.llm_response_cache
|
| 946 |
and hasattr(self.llm_response_cache, "global_config")
|
| 947 |
else self.key_string_value_json_storage_cls(
|
| 948 |
-
namespace="llm_response_cache",
|
| 949 |
global_config=asdict(self),
|
| 950 |
embedding_func=self.embedding_func,
|
| 951 |
),
|
|
@@ -964,7 +965,7 @@ class LightRAG:
|
|
| 964 |
if self.llm_response_cache
|
| 965 |
and hasattr(self.llm_response_cache, "global_config")
|
| 966 |
else self.key_string_value_json_storage_cls(
|
| 967 |
-
namespace="llm_response_cache",
|
| 968 |
global_config=asdict(self),
|
| 969 |
embedding_func=self.embedding_func,
|
| 970 |
),
|
|
@@ -1005,7 +1006,7 @@ class LightRAG:
|
|
| 1005 |
global_config=asdict(self),
|
| 1006 |
hashing_kv=self.llm_response_cache
|
| 1007 |
or self.key_string_value_json_storage_cls(
|
| 1008 |
-
namespace="llm_response_cache",
|
| 1009 |
global_config=asdict(self),
|
| 1010 |
embedding_func=self.embedding_func,
|
| 1011 |
),
|
|
@@ -1036,7 +1037,7 @@ class LightRAG:
|
|
| 1036 |
if self.llm_response_cache
|
| 1037 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1038 |
else self.key_string_value_json_storage_cls(
|
| 1039 |
-
namespace="llm_response_cache",
|
| 1040 |
global_config=asdict(self),
|
| 1041 |
embedding_func=self.embedding_funcne,
|
| 1042 |
),
|
|
@@ -1052,7 +1053,7 @@ class LightRAG:
|
|
| 1052 |
if self.llm_response_cache
|
| 1053 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1054 |
else self.key_string_value_json_storage_cls(
|
| 1055 |
-
namespace="llm_response_cache",
|
| 1056 |
global_config=asdict(self),
|
| 1057 |
embedding_func=self.embedding_func,
|
| 1058 |
),
|
|
@@ -1071,7 +1072,7 @@ class LightRAG:
|
|
| 1071 |
if self.llm_response_cache
|
| 1072 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1073 |
else self.key_string_value_json_storage_cls(
|
| 1074 |
-
namespace="llm_response_cache",
|
| 1075 |
global_config=asdict(self),
|
| 1076 |
embedding_func=self.embedding_func,
|
| 1077 |
),
|
|
|
|
| 167 |
|
| 168 |
# storage
|
| 169 |
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
| 170 |
+
namespace_prefix: str = field(default="")
|
| 171 |
|
| 172 |
enable_llm_cache: bool = True
|
| 173 |
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
| 232 |
+
namespace=self.namespace_prefix + "json_doc_status_storage",
|
| 233 |
embedding_func=None,
|
| 234 |
)
|
| 235 |
|
| 236 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
| 237 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 238 |
embedding_func=self.embedding_func,
|
| 239 |
)
|
| 240 |
|
|
|
|
| 242 |
# add embedding func by walter
|
| 243 |
####
|
| 244 |
self.full_docs = self.key_string_value_json_storage_cls(
|
| 245 |
+
namespace=self.namespace_prefix + "full_docs",
|
| 246 |
embedding_func=self.embedding_func,
|
| 247 |
)
|
| 248 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
| 249 |
+
namespace=self.namespace_prefix + "text_chunks",
|
| 250 |
embedding_func=self.embedding_func,
|
| 251 |
)
|
| 252 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
| 253 |
+
namespace=self.namespace_prefix + "chunk_entity_relation",
|
| 254 |
embedding_func=self.embedding_func,
|
| 255 |
)
|
| 256 |
####
|
|
|
|
| 258 |
####
|
| 259 |
|
| 260 |
self.entities_vdb = self.vector_db_storage_cls(
|
| 261 |
+
namespace=self.namespace_prefix + "entities",
|
| 262 |
embedding_func=self.embedding_func,
|
| 263 |
meta_fields={"entity_name"},
|
| 264 |
)
|
| 265 |
self.relationships_vdb = self.vector_db_storage_cls(
|
| 266 |
+
namespace=self.namespace_prefix + "relationships",
|
| 267 |
embedding_func=self.embedding_func,
|
| 268 |
meta_fields={"src_id", "tgt_id"},
|
| 269 |
)
|
| 270 |
self.chunks_vdb = self.vector_db_storage_cls(
|
| 271 |
+
namespace=self.namespace_prefix + "chunks",
|
| 272 |
embedding_func=self.embedding_func,
|
| 273 |
)
|
| 274 |
|
|
|
|
| 278 |
hashing_kv = self.llm_response_cache
|
| 279 |
else:
|
| 280 |
hashing_kv = self.key_string_value_json_storage_cls(
|
| 281 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 282 |
embedding_func=self.embedding_func,
|
| 283 |
)
|
| 284 |
|
|
|
|
| 293 |
# Initialize document status storage
|
| 294 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
| 295 |
self.doc_status = self.doc_status_storage_cls(
|
| 296 |
+
namespace=self.namespace_prefix + "doc_status",
|
| 297 |
global_config=global_config,
|
| 298 |
embedding_func=None,
|
| 299 |
)
|
|
|
|
| 929 |
if self.llm_response_cache
|
| 930 |
and hasattr(self.llm_response_cache, "global_config")
|
| 931 |
else self.key_string_value_json_storage_cls(
|
| 932 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 933 |
global_config=asdict(self),
|
| 934 |
embedding_func=self.embedding_func,
|
| 935 |
),
|
|
|
|
| 946 |
if self.llm_response_cache
|
| 947 |
and hasattr(self.llm_response_cache, "global_config")
|
| 948 |
else self.key_string_value_json_storage_cls(
|
| 949 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 950 |
global_config=asdict(self),
|
| 951 |
embedding_func=self.embedding_func,
|
| 952 |
),
|
|
|
|
| 965 |
if self.llm_response_cache
|
| 966 |
and hasattr(self.llm_response_cache, "global_config")
|
| 967 |
else self.key_string_value_json_storage_cls(
|
| 968 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 969 |
global_config=asdict(self),
|
| 970 |
embedding_func=self.embedding_func,
|
| 971 |
),
|
|
|
|
| 1006 |
global_config=asdict(self),
|
| 1007 |
hashing_kv=self.llm_response_cache
|
| 1008 |
or self.key_string_value_json_storage_cls(
|
| 1009 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 1010 |
global_config=asdict(self),
|
| 1011 |
embedding_func=self.embedding_func,
|
| 1012 |
),
|
|
|
|
| 1037 |
if self.llm_response_cache
|
| 1038 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1039 |
else self.key_string_value_json_storage_cls(
|
| 1040 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 1041 |
global_config=asdict(self),
|
| 1042 |
embedding_func=self.embedding_funcne,
|
| 1043 |
),
|
|
|
|
| 1053 |
if self.llm_response_cache
|
| 1054 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1055 |
else self.key_string_value_json_storage_cls(
|
| 1056 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 1057 |
global_config=asdict(self),
|
| 1058 |
embedding_func=self.embedding_func,
|
| 1059 |
),
|
|
|
|
| 1072 |
if self.llm_response_cache
|
| 1073 |
and hasattr(self.llm_response_cache, "global_config")
|
| 1074 |
else self.key_string_value_json_storage_cls(
|
| 1075 |
+
namespace=self.namespace_prefix + "llm_response_cache",
|
| 1076 |
global_config=asdict(self),
|
| 1077 |
embedding_func=self.embedding_func,
|
| 1078 |
),
|