João Galego
commited on
Commit
·
da94ea3
1
Parent(s):
4b47997
Added support for Amazon Bedrock models
Browse files- .gitignore +4 -0
- examples/lightrag_bedrock_demo.py +48 -0
- lightrag/llm.py +128 -0
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
*.egg-info
|
| 3 |
+
dickens/
|
| 4 |
+
book.txt
|
examples/lightrag_bedrock_demo.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LightRAG meets Amazon Bedrock ⛰️
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
from lightrag import LightRAG, QueryParam
|
| 8 |
+
from lightrag.llm import bedrock_complete, bedrock_embedding
|
| 9 |
+
from lightrag.utils import EmbeddingFunc
|
| 10 |
+
|
| 11 |
+
WORKING_DIR = "./dickens"
|
| 12 |
+
|
| 13 |
+
if not os.path.exists(WORKING_DIR):
|
| 14 |
+
os.mkdir(WORKING_DIR)
|
| 15 |
+
|
| 16 |
+
rag = LightRAG(
|
| 17 |
+
working_dir=WORKING_DIR,
|
| 18 |
+
llm_model_func=bedrock_complete,
|
| 19 |
+
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
|
| 20 |
+
node2vec_params = {
|
| 21 |
+
'dimensions': 1024,
|
| 22 |
+
'num_walks': 10,
|
| 23 |
+
'walk_length': 40,
|
| 24 |
+
'window_size': 2,
|
| 25 |
+
'iterations': 3,
|
| 26 |
+
'random_seed': 3
|
| 27 |
+
},
|
| 28 |
+
embedding_func=EmbeddingFunc(
|
| 29 |
+
embedding_dim=1024,
|
| 30 |
+
max_token_size=8192,
|
| 31 |
+
func=lambda texts: bedrock_embedding(texts)
|
| 32 |
+
)
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
with open("./book.txt") as f:
|
| 36 |
+
rag.insert(f.read())
|
| 37 |
+
|
| 38 |
+
# Naive search
|
| 39 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
| 40 |
+
|
| 41 |
+
# Local search
|
| 42 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
| 43 |
+
|
| 44 |
+
# Global search
|
| 45 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
| 46 |
+
|
| 47 |
+
# Hybrid search
|
| 48 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
lightrag/llm.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import ollama
|
| 4 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
@@ -48,6 +50,54 @@ async def openai_complete_if_cache(
|
|
| 48 |
)
|
| 49 |
return response.choices[0].message.content
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
async def hf_model_if_cache(
|
| 52 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
| 53 |
) -> str:
|
|
@@ -145,6 +195,19 @@ async def gpt_4o_mini_complete(
|
|
| 145 |
**kwargs,
|
| 146 |
)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
async def hf_model_complete(
|
| 149 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 150 |
) -> str:
|
|
@@ -186,6 +249,71 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
|
|
| 186 |
return np.array([dp.embedding for dp in response.data])
|
| 187 |
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
| 190 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
| 191 |
with torch.no_grad():
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
+
import aioboto3
|
| 4 |
import numpy as np
|
| 5 |
import ollama
|
| 6 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
|
|
| 50 |
)
|
| 51 |
return response.choices[0].message.content
|
| 52 |
|
| 53 |
+
@retry(
|
| 54 |
+
stop=stop_after_attempt(3),
|
| 55 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 56 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 57 |
+
)
|
| 58 |
+
async def bedrock_complete_if_cache(
|
| 59 |
+
model, prompt, system_prompt=None, history_messages=[], base_url=None,
|
| 60 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
| 61 |
+
) -> str:
|
| 62 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 63 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 64 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 65 |
+
|
| 66 |
+
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 67 |
+
|
| 68 |
+
messages = []
|
| 69 |
+
messages.extend(history_messages)
|
| 70 |
+
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
| 71 |
+
|
| 72 |
+
args = {
|
| 73 |
+
'modelId': model,
|
| 74 |
+
'messages': messages
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
if system_prompt:
|
| 78 |
+
args['system'] = [{'text': system_prompt}]
|
| 79 |
+
|
| 80 |
+
if hashing_kv is not None:
|
| 81 |
+
args_hash = compute_args_hash(model, messages)
|
| 82 |
+
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
| 83 |
+
if if_cache_return is not None:
|
| 84 |
+
return if_cache_return["return"]
|
| 85 |
+
|
| 86 |
+
session = aioboto3.Session()
|
| 87 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 88 |
+
|
| 89 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
| 90 |
+
|
| 91 |
+
if hashing_kv is not None:
|
| 92 |
+
await hashing_kv.upsert({
|
| 93 |
+
args_hash: {
|
| 94 |
+
'return': response['output']['message']['content'][0]['text'],
|
| 95 |
+
'model': model
|
| 96 |
+
}
|
| 97 |
+
})
|
| 98 |
+
|
| 99 |
+
return response['output']['message']['content'][0]['text']
|
| 100 |
+
|
| 101 |
async def hf_model_if_cache(
|
| 102 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
| 103 |
) -> str:
|
|
|
|
| 195 |
**kwargs,
|
| 196 |
)
|
| 197 |
|
| 198 |
+
|
| 199 |
+
async def bedrock_complete(
|
| 200 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 201 |
+
) -> str:
|
| 202 |
+
return await bedrock_complete_if_cache(
|
| 203 |
+
"anthropic.claude-3-sonnet-20240229-v1:0",
|
| 204 |
+
prompt,
|
| 205 |
+
system_prompt=system_prompt,
|
| 206 |
+
history_messages=history_messages,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
async def hf_model_complete(
|
| 212 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 213 |
) -> str:
|
|
|
|
| 249 |
return np.array([dp.embedding for dp in response.data])
|
| 250 |
|
| 251 |
|
| 252 |
+
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
| 253 |
+
# @retry(
|
| 254 |
+
# stop=stop_after_attempt(3),
|
| 255 |
+
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 256 |
+
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
| 257 |
+
# )
|
| 258 |
+
async def bedrock_embedding(
|
| 259 |
+
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
|
| 260 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
|
| 261 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 262 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 263 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 264 |
+
|
| 265 |
+
session = aioboto3.Session()
|
| 266 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 267 |
+
|
| 268 |
+
if (model_provider := model.split(".")[0]) == "amazon":
|
| 269 |
+
embed_texts = []
|
| 270 |
+
for text in texts:
|
| 271 |
+
if "v2" in model:
|
| 272 |
+
body = json.dumps({
|
| 273 |
+
'inputText': text,
|
| 274 |
+
# 'dimensions': embedding_dim,
|
| 275 |
+
'embeddingTypes': ["float"]
|
| 276 |
+
})
|
| 277 |
+
elif "v1" in model:
|
| 278 |
+
body = json.dumps({
|
| 279 |
+
'inputText': text
|
| 280 |
+
})
|
| 281 |
+
else:
|
| 282 |
+
raise ValueError(f"Model {model} is not supported!")
|
| 283 |
+
|
| 284 |
+
response = await bedrock_async_client.invoke_model(
|
| 285 |
+
modelId=model,
|
| 286 |
+
body=body,
|
| 287 |
+
accept="application/json",
|
| 288 |
+
contentType="application/json"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
response_body = await response.get('body').json()
|
| 292 |
+
|
| 293 |
+
embed_texts.append(response_body['embedding'])
|
| 294 |
+
elif model_provider == "cohere":
|
| 295 |
+
body = json.dumps({
|
| 296 |
+
'texts': texts,
|
| 297 |
+
'input_type': "search_document",
|
| 298 |
+
'truncate': "NONE"
|
| 299 |
+
})
|
| 300 |
+
|
| 301 |
+
response = await bedrock_async_client.invoke_model(
|
| 302 |
+
model=model,
|
| 303 |
+
body=body,
|
| 304 |
+
accept="application/json",
|
| 305 |
+
contentType="application/json"
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
response_body = json.loads(response.get('body').read())
|
| 309 |
+
|
| 310 |
+
embed_texts = response_body['embeddings']
|
| 311 |
+
else:
|
| 312 |
+
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
| 313 |
+
|
| 314 |
+
return np.array(embed_texts)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
| 318 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
| 319 |
with torch.no_grad():
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
openai
|
| 2 |
tiktoken
|
| 3 |
networkx
|
|
|
|
| 1 |
+
aioboto3
|
| 2 |
openai
|
| 3 |
tiktoken
|
| 4 |
networkx
|