jin
commited on
Commit
·
98478af
1
Parent(s):
ac47ddf
Logic Optimization
Browse files- .gitignore +1 -1
- examples/lightrag_api_oracle_demo..py +58 -51
- examples/lightrag_oracle_demo.py +1 -2
- lightrag/kg/oracle_impl.py +5 -3
- lightrag/llm.py +4 -4
- lightrag/operate.py +93 -59
- lightrag/prompt.py +19 -13
- lightrag/utils.py +4 -3
.gitignore
CHANGED
@@ -13,4 +13,4 @@ ignore_this.txt
|
|
13 |
*.ignore.*
|
14 |
.ruff_cache/
|
15 |
gui/
|
16 |
-
*.log
|
|
|
13 |
*.ignore.*
|
14 |
.ruff_cache/
|
15 |
gui/
|
16 |
+
*.log
|
examples/lightrag_api_oracle_demo..py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
-
|
2 |
from fastapi import FastAPI, HTTPException, File, UploadFile
|
3 |
from fastapi import Query
|
4 |
from contextlib import asynccontextmanager
|
5 |
from pydantic import BaseModel
|
6 |
-
from typing import Optional,Any
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
import sys, os
|
10 |
-
print(os.getcwd())
|
11 |
from pathlib import Path
|
12 |
-
script_directory = Path(__file__).resolve().parent.parent
|
13 |
-
sys.path.append(os.path.abspath(script_directory))
|
14 |
|
15 |
import asyncio
|
16 |
import nest_asyncio
|
@@ -18,10 +16,12 @@ from lightrag import LightRAG, QueryParam
|
|
18 |
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
19 |
from lightrag.utils import EmbeddingFunc
|
20 |
import numpy as np
|
21 |
-
from datetime import datetime
|
22 |
|
23 |
from lightrag.kg.oracle_impl import OracleDB
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
# Apply nest_asyncio to solve event loop issues
|
@@ -47,7 +47,8 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
|
47 |
|
48 |
if not os.path.exists(WORKING_DIR):
|
49 |
os.mkdir(WORKING_DIR)
|
50 |
-
|
|
|
51 |
async def llm_model_func(
|
52 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
53 |
) -> str:
|
@@ -77,10 +78,10 @@ async def get_embedding_dim():
|
|
77 |
embedding_dim = embedding.shape[1]
|
78 |
return embedding_dim
|
79 |
|
|
|
80 |
async def init():
|
81 |
-
|
82 |
# Detect embedding dimension
|
83 |
-
embedding_dimension = 1024 #await get_embedding_dim()
|
84 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
85 |
# Create Oracle DB connection
|
86 |
# The `config` parameter is the connection configuration of Oracle DB
|
@@ -88,36 +89,36 @@ async def init():
|
|
88 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
89 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
oracle_db = OracleDB(config={
|
93 |
-
"user":"",
|
94 |
-
"password":"",
|
95 |
-
"dsn":"",
|
96 |
-
"config_dir":"path_to_config_dir",
|
97 |
-
"wallet_location":"path_to_wallet_location",
|
98 |
-
"wallet_password":"wallet_password",
|
99 |
-
"workspace":"company"
|
100 |
-
} # specify which docs you want to store and query
|
101 |
-
)
|
102 |
-
|
103 |
# Check if Oracle DB tables exist, if not, tables will be created
|
104 |
await oracle_db.check_tables()
|
105 |
# Initialize LightRAG
|
106 |
-
|
107 |
rag = LightRAG(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
|
122 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
123 |
rag.graph_storage_cls.db = oracle_db
|
@@ -128,7 +129,7 @@ async def init():
|
|
128 |
|
129 |
|
130 |
# Extract and Insert into LightRAG storage
|
131 |
-
#with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
132 |
# await rag.ainsert(f.read())
|
133 |
|
134 |
# # Perform search in different modes
|
@@ -147,9 +148,11 @@ class QueryRequest(BaseModel):
|
|
147 |
only_need_context: bool = False
|
148 |
only_need_prompt: bool = False
|
149 |
|
|
|
150 |
class DataRequest(BaseModel):
|
151 |
limit: int = 100
|
152 |
|
|
|
153 |
class InsertRequest(BaseModel):
|
154 |
text: str
|
155 |
|
@@ -164,6 +167,7 @@ class Response(BaseModel):
|
|
164 |
|
165 |
rag = None
|
166 |
|
|
|
167 |
@asynccontextmanager
|
168 |
async def lifespan(app: FastAPI):
|
169 |
global rag
|
@@ -172,25 +176,28 @@ async def lifespan(app: FastAPI):
|
|
172 |
yield
|
173 |
|
174 |
|
175 |
-
app = FastAPI(
|
|
|
|
|
|
|
176 |
|
177 |
@app.post("/query", response_model=Response)
|
178 |
async def query_endpoint(request: QueryRequest):
|
179 |
-
#try:
|
180 |
-
|
181 |
if request.mode == "naive":
|
182 |
top_k = 3
|
183 |
else:
|
184 |
top_k = 60
|
185 |
result = await rag.aquery(
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
return Response(status="success", data=result)
|
195 |
# except Exception as e:
|
196 |
# raise HTTPException(status_code=500, detail=str(e))
|
@@ -199,9 +206,9 @@ async def query_endpoint(request: QueryRequest):
|
|
199 |
@app.get("/data", response_model=Response)
|
200 |
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
|
201 |
if type == "nodes":
|
202 |
-
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit
|
203 |
elif type == "edges":
|
204 |
-
result = await rag.chunk_entity_relation_graph.get_all_edges(limit
|
205 |
elif type == "statistics":
|
206 |
result = await rag.chunk_entity_relation_graph.get_statistics()
|
207 |
return Response(status="success", data=result)
|
@@ -264,4 +271,4 @@ if __name__ == "__main__":
|
|
264 |
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
265 |
|
266 |
# 4. Health check:
|
267 |
-
# curl -X GET "http://127.0.0.1:8020/health"
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, File, UploadFile
|
2 |
from fastapi import Query
|
3 |
from contextlib import asynccontextmanager
|
4 |
from pydantic import BaseModel
|
5 |
+
from typing import Optional, Any
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
|
10 |
|
|
|
|
|
11 |
from pathlib import Path
|
|
|
|
|
12 |
|
13 |
import asyncio
|
14 |
import nest_asyncio
|
|
|
16 |
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
17 |
from lightrag.utils import EmbeddingFunc
|
18 |
import numpy as np
|
|
|
19 |
|
20 |
from lightrag.kg.oracle_impl import OracleDB
|
21 |
|
22 |
+
print(os.getcwd())
|
23 |
+
script_directory = Path(__file__).resolve().parent.parent
|
24 |
+
sys.path.append(os.path.abspath(script_directory))
|
25 |
|
26 |
|
27 |
# Apply nest_asyncio to solve event loop issues
|
|
|
47 |
|
48 |
if not os.path.exists(WORKING_DIR):
|
49 |
os.mkdir(WORKING_DIR)
|
50 |
+
|
51 |
+
|
52 |
async def llm_model_func(
|
53 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
54 |
) -> str:
|
|
|
78 |
embedding_dim = embedding.shape[1]
|
79 |
return embedding_dim
|
80 |
|
81 |
+
|
82 |
async def init():
|
|
|
83 |
# Detect embedding dimension
|
84 |
+
embedding_dimension = 1024 # await get_embedding_dim()
|
85 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
86 |
# Create Oracle DB connection
|
87 |
# The `config` parameter is the connection configuration of Oracle DB
|
|
|
89 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
90 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
91 |
|
92 |
+
oracle_db = OracleDB(
|
93 |
+
config={
|
94 |
+
"user": "",
|
95 |
+
"password": "",
|
96 |
+
"dsn": "",
|
97 |
+
"config_dir": "path_to_config_dir",
|
98 |
+
"wallet_location": "path_to_wallet_location",
|
99 |
+
"wallet_password": "wallet_password",
|
100 |
+
"workspace": "company",
|
101 |
+
} # specify which docs you want to store and query
|
102 |
+
)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# Check if Oracle DB tables exist, if not, tables will be created
|
105 |
await oracle_db.check_tables()
|
106 |
# Initialize LightRAG
|
107 |
+
# We use Oracle DB as the KV/vector/graph storage
|
108 |
rag = LightRAG(
|
109 |
+
enable_llm_cache=False,
|
110 |
+
working_dir=WORKING_DIR,
|
111 |
+
chunk_token_size=512,
|
112 |
+
llm_model_func=llm_model_func,
|
113 |
+
embedding_func=EmbeddingFunc(
|
114 |
+
embedding_dim=embedding_dimension,
|
115 |
+
max_token_size=512,
|
116 |
+
func=embedding_func,
|
117 |
+
),
|
118 |
+
graph_storage="OracleGraphStorage",
|
119 |
+
kv_storage="OracleKVStorage",
|
120 |
+
vector_storage="OracleVectorDBStorage",
|
121 |
+
)
|
122 |
|
123 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
124 |
rag.graph_storage_cls.db = oracle_db
|
|
|
129 |
|
130 |
|
131 |
# Extract and Insert into LightRAG storage
|
132 |
+
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
133 |
# await rag.ainsert(f.read())
|
134 |
|
135 |
# # Perform search in different modes
|
|
|
148 |
only_need_context: bool = False
|
149 |
only_need_prompt: bool = False
|
150 |
|
151 |
+
|
152 |
class DataRequest(BaseModel):
|
153 |
limit: int = 100
|
154 |
|
155 |
+
|
156 |
class InsertRequest(BaseModel):
|
157 |
text: str
|
158 |
|
|
|
167 |
|
168 |
rag = None
|
169 |
|
170 |
+
|
171 |
@asynccontextmanager
|
172 |
async def lifespan(app: FastAPI):
|
173 |
global rag
|
|
|
176 |
yield
|
177 |
|
178 |
|
179 |
+
app = FastAPI(
|
180 |
+
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
181 |
+
)
|
182 |
+
|
183 |
|
184 |
@app.post("/query", response_model=Response)
|
185 |
async def query_endpoint(request: QueryRequest):
|
186 |
+
# try:
|
187 |
+
# loop = asyncio.get_event_loop()
|
188 |
if request.mode == "naive":
|
189 |
top_k = 3
|
190 |
else:
|
191 |
top_k = 60
|
192 |
result = await rag.aquery(
|
193 |
+
request.query,
|
194 |
+
param=QueryParam(
|
195 |
+
mode=request.mode,
|
196 |
+
only_need_context=request.only_need_context,
|
197 |
+
only_need_prompt=request.only_need_prompt,
|
198 |
+
top_k=top_k,
|
199 |
+
),
|
200 |
+
)
|
201 |
return Response(status="success", data=result)
|
202 |
# except Exception as e:
|
203 |
# raise HTTPException(status_code=500, detail=str(e))
|
|
|
206 |
@app.get("/data", response_model=Response)
|
207 |
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
|
208 |
if type == "nodes":
|
209 |
+
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit)
|
210 |
elif type == "edges":
|
211 |
+
result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit)
|
212 |
elif type == "statistics":
|
213 |
result = await rag.chunk_entity_relation_graph.get_statistics()
|
214 |
return Response(status="success", data=result)
|
|
|
271 |
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
272 |
|
273 |
# 4. Health check:
|
274 |
+
# curl -X GET "http://127.0.0.1:8020/health"
|
examples/lightrag_oracle_demo.py
CHANGED
@@ -97,8 +97,7 @@ async def main():
|
|
97 |
graph_storage="OracleGraphStorage",
|
98 |
kv_storage="OracleKVStorage",
|
99 |
vector_storage="OracleVectorDBStorage",
|
100 |
-
|
101 |
-
addon_params = {"example_number":1, "language":"Simplfied Chinese"},
|
102 |
)
|
103 |
|
104 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
|
|
97 |
graph_storage="OracleGraphStorage",
|
98 |
kv_storage="OracleKVStorage",
|
99 |
vector_storage="OracleVectorDBStorage",
|
100 |
+
addon_params={"example_number": 1, "language": "Simplfied Chinese"},
|
|
|
101 |
)
|
102 |
|
103 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -114,7 +114,9 @@ class OracleDB:
|
|
114 |
|
115 |
logger.info("Finished check all tables in Oracle database")
|
116 |
|
117 |
-
async def query(
|
|
|
|
|
118 |
async with self.pool.acquire() as connection:
|
119 |
connection.inputtypehandler = self.input_type_handler
|
120 |
connection.outputtypehandler = self.output_type_handler
|
@@ -256,7 +258,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
256 |
item["__vector__"],
|
257 |
]
|
258 |
# print(merge_sql)
|
259 |
-
await self.db.execute(merge_sql,
|
260 |
|
261 |
if self.namespace == "full_docs":
|
262 |
for k, v in self._data.items():
|
@@ -266,7 +268,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
266 |
)
|
267 |
values = [k, self._data[k]["content"], self.db.workspace]
|
268 |
# print(merge_sql)
|
269 |
-
await self.db.execute(merge_sql,
|
270 |
return left_data
|
271 |
|
272 |
async def index_done_callback(self):
|
|
|
114 |
|
115 |
logger.info("Finished check all tables in Oracle database")
|
116 |
|
117 |
+
async def query(
|
118 |
+
self, sql: str, params: dict = None, multirows: bool = False
|
119 |
+
) -> Union[dict, None]:
|
120 |
async with self.pool.acquire() as connection:
|
121 |
connection.inputtypehandler = self.input_type_handler
|
122 |
connection.outputtypehandler = self.output_type_handler
|
|
|
258 |
item["__vector__"],
|
259 |
]
|
260 |
# print(merge_sql)
|
261 |
+
await self.db.execute(merge_sql, values)
|
262 |
|
263 |
if self.namespace == "full_docs":
|
264 |
for k, v in self._data.items():
|
|
|
268 |
)
|
269 |
values = [k, self._data[k]["content"], self.db.workspace]
|
270 |
# print(merge_sql)
|
271 |
+
await self.db.execute(merge_sql, values)
|
272 |
return left_data
|
273 |
|
274 |
async def index_done_callback(self):
|
lightrag/llm.py
CHANGED
@@ -70,8 +70,8 @@ async def openai_complete_if_cache(
|
|
70 |
model=model, messages=messages, **kwargs
|
71 |
)
|
72 |
content = response.choices[0].message.content
|
73 |
-
if r
|
74 |
-
content = content.encode(
|
75 |
print(content)
|
76 |
if hashing_kv is not None:
|
77 |
await hashing_kv.upsert(
|
@@ -542,7 +542,7 @@ async def openai_embedding(
|
|
542 |
texts: list[str],
|
543 |
model: str = "text-embedding-3-small",
|
544 |
base_url: str = None,
|
545 |
-
api_key: str = None
|
546 |
) -> np.ndarray:
|
547 |
if api_key:
|
548 |
os.environ["OPENAI_API_KEY"] = api_key
|
@@ -551,7 +551,7 @@ async def openai_embedding(
|
|
551 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
552 |
)
|
553 |
response = await openai_async_client.embeddings.create(
|
554 |
-
model=model, input=texts,
|
555 |
)
|
556 |
return np.array([dp.embedding for dp in response.data])
|
557 |
|
|
|
70 |
model=model, messages=messages, **kwargs
|
71 |
)
|
72 |
content = response.choices[0].message.content
|
73 |
+
if r"\u" in content:
|
74 |
+
content = content.encode("utf-8").decode("unicode_escape")
|
75 |
print(content)
|
76 |
if hashing_kv is not None:
|
77 |
await hashing_kv.upsert(
|
|
|
542 |
texts: list[str],
|
543 |
model: str = "text-embedding-3-small",
|
544 |
base_url: str = None,
|
545 |
+
api_key: str = None,
|
546 |
) -> np.ndarray:
|
547 |
if api_key:
|
548 |
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
551 |
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
552 |
)
|
553 |
response = await openai_async_client.embeddings.create(
|
554 |
+
model=model, input=texts, encoding_format="float"
|
555 |
)
|
556 |
return np.array([dp.embedding for dp in response.data])
|
557 |
|
lightrag/operate.py
CHANGED
@@ -249,13 +249,17 @@ async def extract_entities(
|
|
249 |
|
250 |
ordered_chunks = list(chunks.items())
|
251 |
# add language and example number params to prompt
|
252 |
-
language = global_config["addon_params"].get(
|
|
|
|
|
253 |
example_number = global_config["addon_params"].get("example_number", None)
|
254 |
-
if example_number and example_number<len(PROMPTS["entity_extraction_examples"]):
|
255 |
-
examples="\n".join(
|
|
|
|
|
256 |
else:
|
257 |
-
examples="\n".join(PROMPTS["entity_extraction_examples"])
|
258 |
-
|
259 |
entity_extract_prompt = PROMPTS["entity_extraction"]
|
260 |
context_base = dict(
|
261 |
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
@@ -263,8 +267,9 @@ async def extract_entities(
|
|
263 |
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
264 |
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
|
265 |
examples=examples,
|
266 |
-
language=language
|
267 |
-
|
|
|
268 |
continue_prompt = PROMPTS["entiti_continue_extraction"]
|
269 |
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
270 |
|
@@ -396,6 +401,7 @@ async def extract_entities(
|
|
396 |
|
397 |
return knowledge_graph_inst
|
398 |
|
|
|
399 |
async def kg_query(
|
400 |
query,
|
401 |
knowledge_graph_inst: BaseGraphStorage,
|
@@ -408,59 +414,61 @@ async def kg_query(
|
|
408 |
context = None
|
409 |
example_number = global_config["addon_params"].get("example_number", None)
|
410 |
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
411 |
-
examples = "\n".join(
|
|
|
|
|
412 |
else:
|
413 |
-
examples="\n".join(PROMPTS["keywords_extraction_examples"])
|
414 |
-
|
415 |
# Set mode
|
416 |
if query_param.mode not in ["local", "global", "hybrid"]:
|
417 |
logger.error(f"Unknown mode {query_param.mode} in kg_query")
|
418 |
return PROMPTS["fail_response"]
|
419 |
-
|
420 |
# LLM generate keywords
|
421 |
use_model_func = global_config["llm_model_func"]
|
422 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
423 |
-
kw_prompt = kw_prompt_temp.format(query=query,examples=examples)
|
424 |
-
result = await use_model_func(kw_prompt)
|
425 |
-
logger.info(
|
426 |
print(result)
|
427 |
try:
|
428 |
json_text = locate_json_string_body_from_string(result)
|
429 |
keywords_data = json.loads(json_text)
|
430 |
hl_keywords = keywords_data.get("high_level_keywords", [])
|
431 |
ll_keywords = keywords_data.get("low_level_keywords", [])
|
432 |
-
|
433 |
# Handle parsing error
|
434 |
except json.JSONDecodeError as e:
|
435 |
print(f"JSON parsing error: {e} {result}")
|
436 |
return PROMPTS["fail_response"]
|
437 |
-
|
438 |
# Handdle keywords missing
|
439 |
if hl_keywords == [] and ll_keywords == []:
|
440 |
logger.warning("low_level_keywords and high_level_keywords is empty")
|
441 |
-
return PROMPTS["fail_response"]
|
442 |
-
if ll_keywords == [] and query_param.mode in ["local","hybrid"]:
|
443 |
logger.warning("low_level_keywords is empty")
|
444 |
return PROMPTS["fail_response"]
|
445 |
else:
|
446 |
ll_keywords = ", ".join(ll_keywords)
|
447 |
-
if hl_keywords == [] and query_param.mode in ["global","hybrid"]:
|
448 |
logger.warning("high_level_keywords is empty")
|
449 |
return PROMPTS["fail_response"]
|
450 |
else:
|
451 |
hl_keywords = ", ".join(hl_keywords)
|
452 |
-
|
453 |
# Build context
|
454 |
-
keywords = [ll_keywords, hl_keywords]
|
455 |
context = await _build_query_context(
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
if query_param.only_need_context:
|
465 |
return context
|
466 |
if context is None:
|
@@ -468,13 +476,13 @@ async def kg_query(
|
|
468 |
sys_prompt_temp = PROMPTS["rag_response"]
|
469 |
sys_prompt = sys_prompt_temp.format(
|
470 |
context_data=context, response_type=query_param.response_type
|
471 |
-
|
472 |
if query_param.only_need_prompt:
|
473 |
return sys_prompt
|
474 |
response = await use_model_func(
|
475 |
query,
|
476 |
system_prompt=sys_prompt,
|
477 |
-
|
478 |
if len(response) > len(sys_prompt):
|
479 |
response = (
|
480 |
response.replace(sys_prompt, "")
|
@@ -496,44 +504,72 @@ async def _build_query_context(
|
|
496 |
relationships_vdb: BaseVectorStorage,
|
497 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
498 |
query_param: QueryParam,
|
499 |
-
|
500 |
ll_kewwords, hl_keywrds = query[0], query[1]
|
501 |
if query_param.mode in ["local", "hybrid"]:
|
502 |
if ll_kewwords == "":
|
503 |
-
ll_entities_context,ll_relations_context,ll_text_units_context =
|
504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
query_param.mode = "global"
|
506 |
else:
|
507 |
-
|
|
|
|
|
|
|
|
|
508 |
ll_kewwords,
|
509 |
knowledge_graph_inst,
|
510 |
entities_vdb,
|
511 |
text_chunks_db,
|
512 |
-
query_param
|
513 |
-
|
514 |
if query_param.mode in ["global", "hybrid"]:
|
515 |
if hl_keywrds == "":
|
516 |
-
hl_entities_context,hl_relations_context,hl_text_units_context =
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
query_param.mode = "local"
|
519 |
else:
|
520 |
-
|
|
|
|
|
|
|
|
|
521 |
hl_keywrds,
|
522 |
knowledge_graph_inst,
|
523 |
relationships_vdb,
|
524 |
text_chunks_db,
|
525 |
-
query_param
|
526 |
-
|
527 |
-
if query_param.mode ==
|
528 |
-
entities_context,relations_context,text_units_context = combine_contexts(
|
529 |
-
[hl_entities_context,ll_entities_context],
|
530 |
-
[hl_relations_context,ll_relations_context],
|
531 |
-
[hl_text_units_context,ll_text_units_context]
|
532 |
-
|
533 |
-
elif query_param.mode ==
|
534 |
-
entities_context,relations_context,text_units_context =
|
535 |
-
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
return f"""
|
538 |
# -----Entities-----
|
539 |
# ```csv
|
@@ -550,7 +586,6 @@ async def _build_query_context(
|
|
550 |
# """
|
551 |
|
552 |
|
553 |
-
|
554 |
async def _get_node_data(
|
555 |
query,
|
556 |
knowledge_graph_inst: BaseGraphStorage,
|
@@ -568,7 +603,7 @@ async def _get_node_data(
|
|
568 |
)
|
569 |
if not all([n is not None for n in node_datas]):
|
570 |
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
571 |
-
|
572 |
# 获取实体的度
|
573 |
node_degrees = await asyncio.gather(
|
574 |
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
@@ -588,7 +623,7 @@ async def _get_node_data(
|
|
588 |
)
|
589 |
logger.info(
|
590 |
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
|
591 |
-
)
|
592 |
|
593 |
# 构建提示词
|
594 |
entites_section_list = [["id", "entity", "type", "description", "rank"]]
|
@@ -625,7 +660,7 @@ async def _get_node_data(
|
|
625 |
for i, t in enumerate(use_text_units):
|
626 |
text_units_section_list.append([i, t["content"]])
|
627 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
628 |
-
return entities_context,relations_context,text_units_context
|
629 |
|
630 |
|
631 |
async def _find_most_related_text_unit_from_entities(
|
@@ -821,8 +856,7 @@ async def _get_edge_data(
|
|
821 |
for i, t in enumerate(use_text_units):
|
822 |
text_units_section_list.append([i, t["content"]])
|
823 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
824 |
-
return entities_context,relations_context,text_units_context
|
825 |
-
|
826 |
|
827 |
|
828 |
async def _find_most_related_entities_from_relationships(
|
@@ -902,7 +936,7 @@ async def _find_related_text_unit_from_relationships(
|
|
902 |
def combine_contexts(entities, relationships, sources):
|
903 |
# Function to extract entities, relationships, and sources from context strings
|
904 |
hl_entities, ll_entities = entities[0], entities[1]
|
905 |
-
hl_relationships, ll_relationships = relationships[0],relationships[1]
|
906 |
hl_sources, ll_sources = sources[0], sources[1]
|
907 |
# Combine and deduplicate the entities
|
908 |
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
|
|
249 |
|
250 |
ordered_chunks = list(chunks.items())
|
251 |
# add language and example number params to prompt
|
252 |
+
language = global_config["addon_params"].get(
|
253 |
+
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
254 |
+
)
|
255 |
example_number = global_config["addon_params"].get("example_number", None)
|
256 |
+
if example_number and example_number < len(PROMPTS["entity_extraction_examples"]):
|
257 |
+
examples = "\n".join(
|
258 |
+
PROMPTS["entity_extraction_examples"][: int(example_number)]
|
259 |
+
)
|
260 |
else:
|
261 |
+
examples = "\n".join(PROMPTS["entity_extraction_examples"])
|
262 |
+
|
263 |
entity_extract_prompt = PROMPTS["entity_extraction"]
|
264 |
context_base = dict(
|
265 |
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
|
|
267 |
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
268 |
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
|
269 |
examples=examples,
|
270 |
+
language=language,
|
271 |
+
)
|
272 |
+
|
273 |
continue_prompt = PROMPTS["entiti_continue_extraction"]
|
274 |
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
|
275 |
|
|
|
401 |
|
402 |
return knowledge_graph_inst
|
403 |
|
404 |
+
|
405 |
async def kg_query(
|
406 |
query,
|
407 |
knowledge_graph_inst: BaseGraphStorage,
|
|
|
414 |
context = None
|
415 |
example_number = global_config["addon_params"].get("example_number", None)
|
416 |
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
417 |
+
examples = "\n".join(
|
418 |
+
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
419 |
+
)
|
420 |
else:
|
421 |
+
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
422 |
+
|
423 |
# Set mode
|
424 |
if query_param.mode not in ["local", "global", "hybrid"]:
|
425 |
logger.error(f"Unknown mode {query_param.mode} in kg_query")
|
426 |
return PROMPTS["fail_response"]
|
427 |
+
|
428 |
# LLM generate keywords
|
429 |
use_model_func = global_config["llm_model_func"]
|
430 |
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
431 |
+
kw_prompt = kw_prompt_temp.format(query=query, examples=examples)
|
432 |
+
result = await use_model_func(kw_prompt)
|
433 |
+
logger.info("kw_prompt result:")
|
434 |
print(result)
|
435 |
try:
|
436 |
json_text = locate_json_string_body_from_string(result)
|
437 |
keywords_data = json.loads(json_text)
|
438 |
hl_keywords = keywords_data.get("high_level_keywords", [])
|
439 |
ll_keywords = keywords_data.get("low_level_keywords", [])
|
440 |
+
|
441 |
# Handle parsing error
|
442 |
except json.JSONDecodeError as e:
|
443 |
print(f"JSON parsing error: {e} {result}")
|
444 |
return PROMPTS["fail_response"]
|
445 |
+
|
446 |
# Handdle keywords missing
|
447 |
if hl_keywords == [] and ll_keywords == []:
|
448 |
logger.warning("low_level_keywords and high_level_keywords is empty")
|
449 |
+
return PROMPTS["fail_response"]
|
450 |
+
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
|
451 |
logger.warning("low_level_keywords is empty")
|
452 |
return PROMPTS["fail_response"]
|
453 |
else:
|
454 |
ll_keywords = ", ".join(ll_keywords)
|
455 |
+
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
|
456 |
logger.warning("high_level_keywords is empty")
|
457 |
return PROMPTS["fail_response"]
|
458 |
else:
|
459 |
hl_keywords = ", ".join(hl_keywords)
|
460 |
+
|
461 |
# Build context
|
462 |
+
keywords = [ll_keywords, hl_keywords]
|
463 |
context = await _build_query_context(
|
464 |
+
keywords,
|
465 |
+
knowledge_graph_inst,
|
466 |
+
entities_vdb,
|
467 |
+
relationships_vdb,
|
468 |
+
text_chunks_db,
|
469 |
+
query_param,
|
470 |
+
)
|
471 |
+
|
472 |
if query_param.only_need_context:
|
473 |
return context
|
474 |
if context is None:
|
|
|
476 |
sys_prompt_temp = PROMPTS["rag_response"]
|
477 |
sys_prompt = sys_prompt_temp.format(
|
478 |
context_data=context, response_type=query_param.response_type
|
479 |
+
)
|
480 |
if query_param.only_need_prompt:
|
481 |
return sys_prompt
|
482 |
response = await use_model_func(
|
483 |
query,
|
484 |
system_prompt=sys_prompt,
|
485 |
+
)
|
486 |
if len(response) > len(sys_prompt):
|
487 |
response = (
|
488 |
response.replace(sys_prompt, "")
|
|
|
504 |
relationships_vdb: BaseVectorStorage,
|
505 |
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
506 |
query_param: QueryParam,
|
507 |
+
):
|
508 |
ll_kewwords, hl_keywrds = query[0], query[1]
|
509 |
if query_param.mode in ["local", "hybrid"]:
|
510 |
if ll_kewwords == "":
|
511 |
+
ll_entities_context, ll_relations_context, ll_text_units_context = (
|
512 |
+
"",
|
513 |
+
"",
|
514 |
+
"",
|
515 |
+
)
|
516 |
+
warnings.warn(
|
517 |
+
"Low Level context is None. Return empty Low entity/relationship/source"
|
518 |
+
)
|
519 |
query_param.mode = "global"
|
520 |
else:
|
521 |
+
(
|
522 |
+
ll_entities_context,
|
523 |
+
ll_relations_context,
|
524 |
+
ll_text_units_context,
|
525 |
+
) = await _get_node_data(
|
526 |
ll_kewwords,
|
527 |
knowledge_graph_inst,
|
528 |
entities_vdb,
|
529 |
text_chunks_db,
|
530 |
+
query_param,
|
531 |
+
)
|
532 |
if query_param.mode in ["global", "hybrid"]:
|
533 |
if hl_keywrds == "":
|
534 |
+
hl_entities_context, hl_relations_context, hl_text_units_context = (
|
535 |
+
"",
|
536 |
+
"",
|
537 |
+
"",
|
538 |
+
)
|
539 |
+
warnings.warn(
|
540 |
+
"High Level context is None. Return empty High entity/relationship/source"
|
541 |
+
)
|
542 |
query_param.mode = "local"
|
543 |
else:
|
544 |
+
(
|
545 |
+
hl_entities_context,
|
546 |
+
hl_relations_context,
|
547 |
+
hl_text_units_context,
|
548 |
+
) = await _get_edge_data(
|
549 |
hl_keywrds,
|
550 |
knowledge_graph_inst,
|
551 |
relationships_vdb,
|
552 |
text_chunks_db,
|
553 |
+
query_param,
|
554 |
+
)
|
555 |
+
if query_param.mode == "hybrid":
|
556 |
+
entities_context, relations_context, text_units_context = combine_contexts(
|
557 |
+
[hl_entities_context, ll_entities_context],
|
558 |
+
[hl_relations_context, ll_relations_context],
|
559 |
+
[hl_text_units_context, ll_text_units_context],
|
560 |
+
)
|
561 |
+
elif query_param.mode == "local":
|
562 |
+
entities_context, relations_context, text_units_context = (
|
563 |
+
ll_entities_context,
|
564 |
+
ll_relations_context,
|
565 |
+
ll_text_units_context,
|
566 |
+
)
|
567 |
+
elif query_param.mode == "global":
|
568 |
+
entities_context, relations_context, text_units_context = (
|
569 |
+
hl_entities_context,
|
570 |
+
hl_relations_context,
|
571 |
+
hl_text_units_context,
|
572 |
+
)
|
573 |
return f"""
|
574 |
# -----Entities-----
|
575 |
# ```csv
|
|
|
586 |
# """
|
587 |
|
588 |
|
|
|
589 |
async def _get_node_data(
|
590 |
query,
|
591 |
knowledge_graph_inst: BaseGraphStorage,
|
|
|
603 |
)
|
604 |
if not all([n is not None for n in node_datas]):
|
605 |
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
606 |
+
|
607 |
# 获取实体的度
|
608 |
node_degrees = await asyncio.gather(
|
609 |
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
|
|
623 |
)
|
624 |
logger.info(
|
625 |
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
|
626 |
+
)
|
627 |
|
628 |
# 构建提示词
|
629 |
entites_section_list = [["id", "entity", "type", "description", "rank"]]
|
|
|
660 |
for i, t in enumerate(use_text_units):
|
661 |
text_units_section_list.append([i, t["content"]])
|
662 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
663 |
+
return entities_context, relations_context, text_units_context
|
664 |
|
665 |
|
666 |
async def _find_most_related_text_unit_from_entities(
|
|
|
856 |
for i, t in enumerate(use_text_units):
|
857 |
text_units_section_list.append([i, t["content"]])
|
858 |
text_units_context = list_of_list_to_csv(text_units_section_list)
|
859 |
+
return entities_context, relations_context, text_units_context
|
|
|
860 |
|
861 |
|
862 |
async def _find_most_related_entities_from_relationships(
|
|
|
936 |
def combine_contexts(entities, relationships, sources):
|
937 |
# Function to extract entities, relationships, and sources from context strings
|
938 |
hl_entities, ll_entities = entities[0], entities[1]
|
939 |
+
hl_relationships, ll_relationships = relationships[0], relationships[1]
|
940 |
hl_sources, ll_sources = sources[0], sources[1]
|
941 |
# Combine and deduplicate the entities
|
942 |
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
lightrag/prompt.py
CHANGED
@@ -52,7 +52,7 @@ Output:
|
|
52 |
"""
|
53 |
|
54 |
PROMPTS["entity_extraction_examples"] = [
|
55 |
-
"""Example 1:
|
56 |
|
57 |
Entity_types: [person, technology, mission, organization, location]
|
58 |
Text:
|
@@ -77,7 +77,7 @@ Output:
|
|
77 |
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
|
78 |
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
|
79 |
#############################""",
|
80 |
-
"""Example 2:
|
81 |
|
82 |
Entity_types: [person, technology, mission, organization, location]
|
83 |
Text:
|
@@ -95,7 +95,7 @@ Output:
|
|
95 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
|
96 |
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
|
97 |
#############################""",
|
98 |
-
"""Example 3:
|
99 |
|
100 |
Entity_types: [person, role, technology, organization, event, location, concept]
|
101 |
Text:
|
@@ -121,10 +121,12 @@ Output:
|
|
121 |
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
|
122 |
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
|
123 |
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
|
124 |
-
#############################"""
|
125 |
]
|
126 |
|
127 |
-
PROMPTS[
|
|
|
|
|
128 |
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
|
129 |
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
130 |
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
@@ -139,10 +141,14 @@ Description List: {description_list}
|
|
139 |
Output:
|
140 |
"""
|
141 |
|
142 |
-
PROMPTS[
|
|
|
|
|
143 |
"""
|
144 |
|
145 |
-
PROMPTS[
|
|
|
|
|
146 |
"""
|
147 |
|
148 |
PROMPTS["fail_response"] = "Sorry, I'm not able to provide an answer to that question."
|
@@ -201,7 +207,7 @@ Output:
|
|
201 |
"""
|
202 |
|
203 |
PROMPTS["keywords_extraction_examples"] = [
|
204 |
-
|
205 |
|
206 |
Query: "How does international trade influence global economic stability?"
|
207 |
################
|
@@ -211,7 +217,7 @@ Output:
|
|
211 |
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
|
212 |
}}
|
213 |
#############################""",
|
214 |
-
|
215 |
|
216 |
Query: "What are the environmental consequences of deforestation on biodiversity?"
|
217 |
################
|
@@ -220,8 +226,8 @@ Output:
|
|
220 |
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
|
221 |
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
|
222 |
}}
|
223 |
-
#############################""",
|
224 |
-
|
225 |
|
226 |
Query: "What is the role of education in reducing poverty?"
|
227 |
################
|
@@ -230,8 +236,8 @@ Output:
|
|
230 |
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
|
231 |
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
|
232 |
}}
|
233 |
-
#############################"""
|
234 |
-
]
|
235 |
|
236 |
|
237 |
PROMPTS["naive_rag_response"] = """---Role---
|
|
|
52 |
"""
|
53 |
|
54 |
PROMPTS["entity_extraction_examples"] = [
|
55 |
+
"""Example 1:
|
56 |
|
57 |
Entity_types: [person, technology, mission, organization, location]
|
58 |
Text:
|
|
|
77 |
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
|
78 |
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
|
79 |
#############################""",
|
80 |
+
"""Example 2:
|
81 |
|
82 |
Entity_types: [person, technology, mission, organization, location]
|
83 |
Text:
|
|
|
95 |
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
|
96 |
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
|
97 |
#############################""",
|
98 |
+
"""Example 3:
|
99 |
|
100 |
Entity_types: [person, role, technology, organization, event, location, concept]
|
101 |
Text:
|
|
|
121 |
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
|
122 |
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
|
123 |
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
|
124 |
+
#############################""",
|
125 |
]
|
126 |
|
127 |
+
PROMPTS[
|
128 |
+
"summarize_entity_descriptions"
|
129 |
+
] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
|
130 |
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
|
131 |
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
|
132 |
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
|
|
|
141 |
Output:
|
142 |
"""
|
143 |
|
144 |
+
PROMPTS[
|
145 |
+
"entiti_continue_extraction"
|
146 |
+
] = """MANY entities were missed in the last extraction. Add them below using the same format:
|
147 |
"""
|
148 |
|
149 |
+
PROMPTS[
|
150 |
+
"entiti_if_loop_extraction"
|
151 |
+
] = """It appears some entities may have still been missed. Answer YES | NO if there are still entities that need to be added.
|
152 |
"""
|
153 |
|
154 |
PROMPTS["fail_response"] = "Sorry, I'm not able to provide an answer to that question."
|
|
|
207 |
"""
|
208 |
|
209 |
PROMPTS["keywords_extraction_examples"] = [
|
210 |
+
"""Example 1:
|
211 |
|
212 |
Query: "How does international trade influence global economic stability?"
|
213 |
################
|
|
|
217 |
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
|
218 |
}}
|
219 |
#############################""",
|
220 |
+
"""Example 2:
|
221 |
|
222 |
Query: "What are the environmental consequences of deforestation on biodiversity?"
|
223 |
################
|
|
|
226 |
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
|
227 |
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
|
228 |
}}
|
229 |
+
#############################""",
|
230 |
+
"""Example 3:
|
231 |
|
232 |
Query: "What is the role of education in reducing poverty?"
|
233 |
################
|
|
|
236 |
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
|
237 |
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
|
238 |
}}
|
239 |
+
#############################""",
|
240 |
+
]
|
241 |
|
242 |
|
243 |
PROMPTS["naive_rag_response"] = """---Role---
|
lightrag/utils.py
CHANGED
@@ -56,7 +56,8 @@ def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
|
56 |
maybe_json_str = maybe_json_str.replace("'", '"')
|
57 |
json.loads(maybe_json_str)
|
58 |
return maybe_json_str
|
59 |
-
except:
|
|
|
60 |
# try:
|
61 |
# content = (
|
62 |
# content.replace(kw_prompt[:-1], "")
|
@@ -64,9 +65,9 @@ def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
|
64 |
# .replace("model", "")
|
65 |
# .strip()
|
66 |
# )
|
67 |
-
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
|
68 |
# json.loads(maybe_json_str)
|
69 |
-
|
70 |
return None
|
71 |
|
72 |
|
|
|
56 |
maybe_json_str = maybe_json_str.replace("'", '"')
|
57 |
json.loads(maybe_json_str)
|
58 |
return maybe_json_str
|
59 |
+
except Exception:
|
60 |
+
pass
|
61 |
# try:
|
62 |
# content = (
|
63 |
# content.replace(kw_prompt[:-1], "")
|
|
|
65 |
# .replace("model", "")
|
66 |
# .strip()
|
67 |
# )
|
68 |
+
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
|
69 |
# json.loads(maybe_json_str)
|
70 |
+
|
71 |
return None
|
72 |
|
73 |
|