Abyl Ikhsanov
commited on
Commit
·
74e6c1c
1
Parent(s):
a7f6abf
Update llm.py
Browse files- lightrag/llm.py +80 -1
lightrag/llm.py
CHANGED
|
@@ -4,7 +4,7 @@ import json
|
|
| 4 |
import aioboto3
|
| 5 |
import numpy as np
|
| 6 |
import ollama
|
| 7 |
-
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
| 8 |
from tenacity import (
|
| 9 |
retry,
|
| 10 |
stop_after_attempt,
|
|
@@ -61,6 +61,49 @@ async def openai_complete_if_cache(
|
|
| 61 |
)
|
| 62 |
return response.choices[0].message.content
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
class BedrockError(Exception):
|
| 66 |
"""Generic error for issues related to Amazon Bedrock"""
|
|
@@ -270,6 +313,16 @@ async def gpt_4o_mini_complete(
|
|
| 270 |
**kwargs,
|
| 271 |
)
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
async def bedrock_complete(
|
| 275 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
@@ -332,6 +385,32 @@ async def openai_embedding(
|
|
| 332 |
)
|
| 333 |
return np.array([dp.embedding for dp in response.data])
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
| 337 |
# @retry(
|
|
|
|
| 4 |
import aioboto3
|
| 5 |
import numpy as np
|
| 6 |
import ollama
|
| 7 |
+
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout, AsyncAzureOpenAI
|
| 8 |
from tenacity import (
|
| 9 |
retry,
|
| 10 |
stop_after_attempt,
|
|
|
|
| 61 |
)
|
| 62 |
return response.choices[0].message.content
|
| 63 |
|
| 64 |
+
@retry(
|
| 65 |
+
stop=stop_after_attempt(3),
|
| 66 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 67 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 68 |
+
)
|
| 69 |
+
async def azure_openai_complete_if_cache(model,
|
| 70 |
+
prompt,
|
| 71 |
+
system_prompt=None,
|
| 72 |
+
history_messages=[],
|
| 73 |
+
base_url=None,
|
| 74 |
+
api_key=None,
|
| 75 |
+
**kwargs):
|
| 76 |
+
if api_key:
|
| 77 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 78 |
+
if base_url:
|
| 79 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 80 |
+
|
| 81 |
+
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 82 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 83 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
| 84 |
+
|
| 85 |
+
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 86 |
+
messages = []
|
| 87 |
+
if system_prompt:
|
| 88 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 89 |
+
messages.extend(history_messages)
|
| 90 |
+
if prompt is not None:
|
| 91 |
+
messages.append({"role": "user", "content": prompt})
|
| 92 |
+
if hashing_kv is not None:
|
| 93 |
+
args_hash = compute_args_hash(model, messages)
|
| 94 |
+
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
| 95 |
+
if if_cache_return is not None:
|
| 96 |
+
return if_cache_return["return"]
|
| 97 |
+
|
| 98 |
+
response = await openai_async_client.chat.completions.create(
|
| 99 |
+
model=model, messages=messages, **kwargs
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
if hashing_kv is not None:
|
| 103 |
+
await hashing_kv.upsert(
|
| 104 |
+
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
| 105 |
+
)
|
| 106 |
+
return response.choices[0].message.content
|
| 107 |
|
| 108 |
class BedrockError(Exception):
|
| 109 |
"""Generic error for issues related to Amazon Bedrock"""
|
|
|
|
| 313 |
**kwargs,
|
| 314 |
)
|
| 315 |
|
| 316 |
+
async def azure_openai_complete(
|
| 317 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 318 |
+
) -> str:
|
| 319 |
+
return await azure_openai_complete_if_cache(
|
| 320 |
+
"conversation-4o-mini",
|
| 321 |
+
prompt,
|
| 322 |
+
system_prompt=system_prompt,
|
| 323 |
+
history_messages=history_messages,
|
| 324 |
+
**kwargs,
|
| 325 |
+
)
|
| 326 |
|
| 327 |
async def bedrock_complete(
|
| 328 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
| 385 |
)
|
| 386 |
return np.array([dp.embedding for dp in response.data])
|
| 387 |
|
| 388 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
| 389 |
+
@retry(
|
| 390 |
+
stop=stop_after_attempt(3),
|
| 391 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 392 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 393 |
+
)
|
| 394 |
+
async def azure_openai_embedding(
|
| 395 |
+
texts: list[str],
|
| 396 |
+
model: str = "text-embedding-3-small",
|
| 397 |
+
base_url: str = None,
|
| 398 |
+
api_key: str = None,
|
| 399 |
+
) -> np.ndarray:
|
| 400 |
+
if api_key:
|
| 401 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 402 |
+
if base_url:
|
| 403 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 404 |
+
|
| 405 |
+
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 406 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 407 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
| 408 |
+
|
| 409 |
+
response = await openai_async_client.embeddings.create(
|
| 410 |
+
model=model, input=texts, encoding_format="float"
|
| 411 |
+
)
|
| 412 |
+
return np.array([dp.embedding for dp in response.data])
|
| 413 |
+
|
| 414 |
|
| 415 |
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
| 416 |
# @retry(
|