Update storage.py
Browse files- lightrag/storage.py +1 -460
lightrag/storage.py
CHANGED
|
@@ -1,460 +1 @@
|
|
| 1 |
-
|
| 2 |
-
import html
|
| 3 |
-
import os
|
| 4 |
-
from tqdm.asyncio import tqdm as tqdm_async
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
from typing import Any, Union, cast, Dict
|
| 7 |
-
import networkx as nx
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
from nano_vectordb import NanoVectorDB
|
| 11 |
-
import time
|
| 12 |
-
|
| 13 |
-
from .utils import (
|
| 14 |
-
logger,
|
| 15 |
-
load_json,
|
| 16 |
-
write_json,
|
| 17 |
-
compute_mdhash_id,
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
from .base import (
|
| 21 |
-
BaseGraphStorage,
|
| 22 |
-
BaseKVStorage,
|
| 23 |
-
BaseVectorStorage,
|
| 24 |
-
DocStatus,
|
| 25 |
-
DocProcessingStatus,
|
| 26 |
-
DocStatusStorage,
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
@dataclass
|
| 31 |
-
class JsonKVStorage(BaseKVStorage):
|
| 32 |
-
def __post_init__(self):
|
| 33 |
-
working_dir = self.global_config["working_dir"]
|
| 34 |
-
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
|
| 35 |
-
self._data = load_json(self._file_name) or {}
|
| 36 |
-
self._lock = asyncio.Lock()
|
| 37 |
-
logger.info(f"Load KV {self.namespace} with {len(self._data)} data")
|
| 38 |
-
|
| 39 |
-
async def all_keys(self) -> list[str]:
|
| 40 |
-
return list(self._data.keys())
|
| 41 |
-
|
| 42 |
-
async def index_done_callback(self):
|
| 43 |
-
write_json(self._data, self._file_name)
|
| 44 |
-
|
| 45 |
-
async def get_by_id(self, id):
|
| 46 |
-
return self._data.get(id, None)
|
| 47 |
-
|
| 48 |
-
async def get_by_ids(self, ids, fields=None):
|
| 49 |
-
if fields is None:
|
| 50 |
-
return [self._data.get(id, None) for id in ids]
|
| 51 |
-
return [
|
| 52 |
-
(
|
| 53 |
-
{k: v for k, v in self._data[id].items() if k in fields}
|
| 54 |
-
if self._data.get(id, None)
|
| 55 |
-
else None
|
| 56 |
-
)
|
| 57 |
-
for id in ids
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
async def filter_keys(self, data: list[str]) -> set[str]:
|
| 61 |
-
return set([s for s in data if s not in self._data])
|
| 62 |
-
|
| 63 |
-
async def upsert(self, data: dict[str, dict]):
|
| 64 |
-
left_data = {k: v for k, v in data.items() if k not in self._data}
|
| 65 |
-
self._data.update(left_data)
|
| 66 |
-
return left_data
|
| 67 |
-
|
| 68 |
-
async def drop(self):
|
| 69 |
-
self._data = {}
|
| 70 |
-
|
| 71 |
-
async def filter(self, filter_func):
|
| 72 |
-
"""Filter key-value pairs based on a filter function
|
| 73 |
-
|
| 74 |
-
Args:
|
| 75 |
-
filter_func: The filter function, which takes a value as an argument and returns a boolean value
|
| 76 |
-
|
| 77 |
-
Returns:
|
| 78 |
-
Dict: Key-value pairs that meet the condition
|
| 79 |
-
"""
|
| 80 |
-
result = {}
|
| 81 |
-
async with self._lock:
|
| 82 |
-
for key, value in self._data.items():
|
| 83 |
-
if filter_func(value):
|
| 84 |
-
result[key] = value
|
| 85 |
-
return result
|
| 86 |
-
|
| 87 |
-
async def delete(self, ids: list[str]):
|
| 88 |
-
"""Delete data with specified IDs
|
| 89 |
-
|
| 90 |
-
Args:
|
| 91 |
-
ids: List of IDs to delete
|
| 92 |
-
"""
|
| 93 |
-
async with self._lock:
|
| 94 |
-
for id in ids:
|
| 95 |
-
if id in self._data:
|
| 96 |
-
del self._data[id]
|
| 97 |
-
await self.index_done_callback()
|
| 98 |
-
logger.info(f"Successfully deleted {len(ids)} items from {self.namespace}")
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
@dataclass
|
| 102 |
-
class NanoVectorDBStorage(BaseVectorStorage):
|
| 103 |
-
cosine_better_than_threshold: float = 0.2
|
| 104 |
-
|
| 105 |
-
def __post_init__(self):
|
| 106 |
-
self._client_file_name = os.path.join(
|
| 107 |
-
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
| 108 |
-
)
|
| 109 |
-
self._max_batch_size = self.global_config["embedding_batch_num"]
|
| 110 |
-
self._client = NanoVectorDB(
|
| 111 |
-
self.embedding_func.embedding_dim, storage_file=self._client_file_name
|
| 112 |
-
)
|
| 113 |
-
self.cosine_better_than_threshold = self.global_config.get(
|
| 114 |
-
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
async def upsert(self, data: dict[str, dict]):
|
| 118 |
-
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
| 119 |
-
if not len(data):
|
| 120 |
-
logger.warning("You insert an empty data to vector DB")
|
| 121 |
-
return []
|
| 122 |
-
|
| 123 |
-
current_time = time.time()
|
| 124 |
-
list_data = [
|
| 125 |
-
{
|
| 126 |
-
"__id__": k,
|
| 127 |
-
"__created_at__": current_time,
|
| 128 |
-
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
| 129 |
-
}
|
| 130 |
-
for k, v in data.items()
|
| 131 |
-
]
|
| 132 |
-
contents = [v["content"] for v in data.values()]
|
| 133 |
-
batches = [
|
| 134 |
-
contents[i : i + self._max_batch_size]
|
| 135 |
-
for i in range(0, len(contents), self._max_batch_size)
|
| 136 |
-
]
|
| 137 |
-
|
| 138 |
-
async def wrapped_task(batch):
|
| 139 |
-
result = await self.embedding_func(batch)
|
| 140 |
-
pbar.update(1)
|
| 141 |
-
return result
|
| 142 |
-
|
| 143 |
-
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
| 144 |
-
pbar = tqdm_async(
|
| 145 |
-
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
| 146 |
-
)
|
| 147 |
-
embeddings_list = await asyncio.gather(*embedding_tasks)
|
| 148 |
-
|
| 149 |
-
embeddings = np.concatenate(embeddings_list)
|
| 150 |
-
if len(embeddings) == len(list_data):
|
| 151 |
-
for i, d in enumerate(list_data):
|
| 152 |
-
d["__vector__"] = embeddings[i]
|
| 153 |
-
results = self._client.upsert(datas=list_data)
|
| 154 |
-
return results
|
| 155 |
-
else:
|
| 156 |
-
# sometimes the embedding is not returned correctly. just log it.
|
| 157 |
-
logger.error(
|
| 158 |
-
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
async def query(self, query: str, top_k=5):
|
| 162 |
-
embedding = await self.embedding_func([query])
|
| 163 |
-
embedding = embedding[0]
|
| 164 |
-
results = self._client.query(
|
| 165 |
-
query=embedding,
|
| 166 |
-
top_k=top_k,
|
| 167 |
-
better_than_threshold=self.cosine_better_than_threshold,
|
| 168 |
-
)
|
| 169 |
-
results = [
|
| 170 |
-
{
|
| 171 |
-
**dp,
|
| 172 |
-
"id": dp["__id__"],
|
| 173 |
-
"distance": dp["__metrics__"],
|
| 174 |
-
"created_at": dp.get("__created_at__"),
|
| 175 |
-
}
|
| 176 |
-
for dp in results
|
| 177 |
-
]
|
| 178 |
-
return results
|
| 179 |
-
|
| 180 |
-
@property
|
| 181 |
-
def client_storage(self):
|
| 182 |
-
return getattr(self._client, "_NanoVectorDB__storage")
|
| 183 |
-
|
| 184 |
-
async def delete(self, ids: list[str]):
|
| 185 |
-
"""Delete vectors with specified IDs
|
| 186 |
-
|
| 187 |
-
Args:
|
| 188 |
-
ids: List of vector IDs to be deleted
|
| 189 |
-
"""
|
| 190 |
-
try:
|
| 191 |
-
self._client.delete(ids)
|
| 192 |
-
logger.info(
|
| 193 |
-
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
| 194 |
-
)
|
| 195 |
-
except Exception as e:
|
| 196 |
-
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
| 197 |
-
|
| 198 |
-
async def delete_entity(self, entity_name: str):
|
| 199 |
-
try:
|
| 200 |
-
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
| 201 |
-
logger.debug(
|
| 202 |
-
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
| 203 |
-
)
|
| 204 |
-
# Check if the entity exists
|
| 205 |
-
if self._client.get([entity_id]):
|
| 206 |
-
await self.delete([entity_id])
|
| 207 |
-
logger.debug(f"Successfully deleted entity {entity_name}")
|
| 208 |
-
else:
|
| 209 |
-
logger.debug(f"Entity {entity_name} not found in storage")
|
| 210 |
-
except Exception as e:
|
| 211 |
-
logger.error(f"Error deleting entity {entity_name}: {e}")
|
| 212 |
-
|
| 213 |
-
async def delete_entity_relation(self, entity_name: str):
|
| 214 |
-
try:
|
| 215 |
-
relations = [
|
| 216 |
-
dp
|
| 217 |
-
for dp in self.client_storage["data"]
|
| 218 |
-
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
|
| 219 |
-
]
|
| 220 |
-
logger.debug(f"Found {len(relations)} relations for entity {entity_name}")
|
| 221 |
-
ids_to_delete = [relation["__id__"] for relation in relations]
|
| 222 |
-
|
| 223 |
-
if ids_to_delete:
|
| 224 |
-
await self.delete(ids_to_delete)
|
| 225 |
-
logger.debug(
|
| 226 |
-
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
|
| 227 |
-
)
|
| 228 |
-
else:
|
| 229 |
-
logger.debug(f"No relations found for entity {entity_name}")
|
| 230 |
-
except Exception as e:
|
| 231 |
-
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
| 232 |
-
|
| 233 |
-
async def index_done_callback(self):
|
| 234 |
-
self._client.save()
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
@dataclass
|
| 238 |
-
class NetworkXStorage(BaseGraphStorage):
|
| 239 |
-
@staticmethod
|
| 240 |
-
def load_nx_graph(file_name) -> nx.Graph:
|
| 241 |
-
if os.path.exists(file_name):
|
| 242 |
-
return nx.read_graphml(file_name)
|
| 243 |
-
return None
|
| 244 |
-
|
| 245 |
-
@staticmethod
|
| 246 |
-
def write_nx_graph(graph: nx.Graph, file_name):
|
| 247 |
-
logger.info(
|
| 248 |
-
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
|
| 249 |
-
)
|
| 250 |
-
nx.write_graphml(graph, file_name)
|
| 251 |
-
|
| 252 |
-
@staticmethod
|
| 253 |
-
def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
|
| 254 |
-
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
| 255 |
-
Return the largest connected component of the graph, with nodes and edges sorted in a stable way.
|
| 256 |
-
"""
|
| 257 |
-
from graspologic.utils import largest_connected_component
|
| 258 |
-
|
| 259 |
-
graph = graph.copy()
|
| 260 |
-
graph = cast(nx.Graph, largest_connected_component(graph))
|
| 261 |
-
node_mapping = {
|
| 262 |
-
node: html.unescape(node.upper().strip()) for node in graph.nodes()
|
| 263 |
-
} # type: ignore
|
| 264 |
-
graph = nx.relabel_nodes(graph, node_mapping)
|
| 265 |
-
return NetworkXStorage._stabilize_graph(graph)
|
| 266 |
-
|
| 267 |
-
@staticmethod
|
| 268 |
-
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
|
| 269 |
-
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
| 270 |
-
Ensure an undirected graph with the same relationships will always be read the same way.
|
| 271 |
-
"""
|
| 272 |
-
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
|
| 273 |
-
|
| 274 |
-
sorted_nodes = graph.nodes(data=True)
|
| 275 |
-
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
|
| 276 |
-
|
| 277 |
-
fixed_graph.add_nodes_from(sorted_nodes)
|
| 278 |
-
edges = list(graph.edges(data=True))
|
| 279 |
-
|
| 280 |
-
if not graph.is_directed():
|
| 281 |
-
|
| 282 |
-
def _sort_source_target(edge):
|
| 283 |
-
source, target, edge_data = edge
|
| 284 |
-
if source > target:
|
| 285 |
-
temp = source
|
| 286 |
-
source = target
|
| 287 |
-
target = temp
|
| 288 |
-
return source, target, edge_data
|
| 289 |
-
|
| 290 |
-
edges = [_sort_source_target(edge) for edge in edges]
|
| 291 |
-
|
| 292 |
-
def _get_edge_key(source: Any, target: Any) -> str:
|
| 293 |
-
return f"{source} -> {target}"
|
| 294 |
-
|
| 295 |
-
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
|
| 296 |
-
|
| 297 |
-
fixed_graph.add_edges_from(edges)
|
| 298 |
-
return fixed_graph
|
| 299 |
-
|
| 300 |
-
def __post_init__(self):
|
| 301 |
-
self._graphml_xml_file = os.path.join(
|
| 302 |
-
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
|
| 303 |
-
)
|
| 304 |
-
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
|
| 305 |
-
if preloaded_graph is not None:
|
| 306 |
-
logger.info(
|
| 307 |
-
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
|
| 308 |
-
)
|
| 309 |
-
self._graph = preloaded_graph or nx.Graph()
|
| 310 |
-
self._node_embed_algorithms = {
|
| 311 |
-
"node2vec": self._node2vec_embed,
|
| 312 |
-
}
|
| 313 |
-
|
| 314 |
-
async def index_done_callback(self):
|
| 315 |
-
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
|
| 316 |
-
|
| 317 |
-
async def has_node(self, node_id: str) -> bool:
|
| 318 |
-
return self._graph.has_node(node_id)
|
| 319 |
-
|
| 320 |
-
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
| 321 |
-
return self._graph.has_edge(source_node_id, target_node_id)
|
| 322 |
-
|
| 323 |
-
async def get_node(self, node_id: str) -> Union[dict, None]:
|
| 324 |
-
return self._graph.nodes.get(node_id)
|
| 325 |
-
|
| 326 |
-
async def node_degree(self, node_id: str) -> int:
|
| 327 |
-
return self._graph.degree(node_id)
|
| 328 |
-
|
| 329 |
-
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
| 330 |
-
return self._graph.degree(src_id) + self._graph.degree(tgt_id)
|
| 331 |
-
|
| 332 |
-
async def get_edge(
|
| 333 |
-
self, source_node_id: str, target_node_id: str
|
| 334 |
-
) -> Union[dict, None]:
|
| 335 |
-
return self._graph.edges.get((source_node_id, target_node_id))
|
| 336 |
-
|
| 337 |
-
async def get_node_edges(self, source_node_id: str):
|
| 338 |
-
if self._graph.has_node(source_node_id):
|
| 339 |
-
return list(self._graph.edges(source_node_id))
|
| 340 |
-
return None
|
| 341 |
-
|
| 342 |
-
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
| 343 |
-
self._graph.add_node(node_id, **node_data)
|
| 344 |
-
|
| 345 |
-
async def upsert_edge(
|
| 346 |
-
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
| 347 |
-
):
|
| 348 |
-
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
|
| 349 |
-
|
| 350 |
-
async def delete_node(self, node_id: str):
|
| 351 |
-
"""
|
| 352 |
-
Delete a node from the graph based on the specified node_id.
|
| 353 |
-
|
| 354 |
-
:param node_id: The node_id to delete
|
| 355 |
-
"""
|
| 356 |
-
if self._graph.has_node(node_id):
|
| 357 |
-
self._graph.remove_node(node_id)
|
| 358 |
-
logger.info(f"Node {node_id} deleted from the graph.")
|
| 359 |
-
else:
|
| 360 |
-
logger.warning(f"Node {node_id} not found in the graph for deletion.")
|
| 361 |
-
|
| 362 |
-
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
| 363 |
-
if algorithm not in self._node_embed_algorithms:
|
| 364 |
-
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
| 365 |
-
return await self._node_embed_algorithms[algorithm]()
|
| 366 |
-
|
| 367 |
-
# @TODO: NOT USED
|
| 368 |
-
async def _node2vec_embed(self):
|
| 369 |
-
from graspologic import embed
|
| 370 |
-
|
| 371 |
-
embeddings, nodes = embed.node2vec_embed(
|
| 372 |
-
self._graph,
|
| 373 |
-
**self.global_config["node2vec_params"],
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
|
| 377 |
-
return embeddings, nodes_ids
|
| 378 |
-
|
| 379 |
-
def remove_nodes(self, nodes: list[str]):
|
| 380 |
-
"""Delete multiple nodes
|
| 381 |
-
|
| 382 |
-
Args:
|
| 383 |
-
nodes: List of node IDs to be deleted
|
| 384 |
-
"""
|
| 385 |
-
for node in nodes:
|
| 386 |
-
if self._graph.has_node(node):
|
| 387 |
-
self._graph.remove_node(node)
|
| 388 |
-
|
| 389 |
-
def remove_edges(self, edges: list[tuple[str, str]]):
|
| 390 |
-
"""Delete multiple edges
|
| 391 |
-
|
| 392 |
-
Args:
|
| 393 |
-
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
| 394 |
-
"""
|
| 395 |
-
for source, target in edges:
|
| 396 |
-
if self._graph.has_edge(source, target):
|
| 397 |
-
self._graph.remove_edge(source, target)
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
@dataclass
|
| 401 |
-
class JsonDocStatusStorage(DocStatusStorage):
|
| 402 |
-
"""JSON implementation of document status storage"""
|
| 403 |
-
|
| 404 |
-
def __post_init__(self):
|
| 405 |
-
working_dir = self.global_config["working_dir"]
|
| 406 |
-
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
|
| 407 |
-
self._data = load_json(self._file_name) or {}
|
| 408 |
-
logger.info(f"Loaded document status storage with {len(self._data)} records")
|
| 409 |
-
|
| 410 |
-
async def filter_keys(self, data: list[str]) -> set[str]:
|
| 411 |
-
"""Return keys that should be processed (not in storage or not successfully processed)"""
|
| 412 |
-
return set(
|
| 413 |
-
[
|
| 414 |
-
k
|
| 415 |
-
for k in data
|
| 416 |
-
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED
|
| 417 |
-
]
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
async def get_status_counts(self) -> Dict[str, int]:
|
| 421 |
-
"""Get counts of documents in each status"""
|
| 422 |
-
counts = {status: 0 for status in DocStatus}
|
| 423 |
-
for doc in self._data.values():
|
| 424 |
-
counts[doc["status"]] += 1
|
| 425 |
-
return counts
|
| 426 |
-
|
| 427 |
-
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
| 428 |
-
"""Get all failed documents"""
|
| 429 |
-
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED}
|
| 430 |
-
|
| 431 |
-
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
| 432 |
-
"""Get all pending documents"""
|
| 433 |
-
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING}
|
| 434 |
-
|
| 435 |
-
async def index_done_callback(self):
|
| 436 |
-
"""Save data to file after indexing"""
|
| 437 |
-
write_json(self._data, self._file_name)
|
| 438 |
-
|
| 439 |
-
async def upsert(self, data: dict[str, dict]):
|
| 440 |
-
"""Update or insert document status
|
| 441 |
-
|
| 442 |
-
Args:
|
| 443 |
-
data: Dictionary of document IDs and their status data
|
| 444 |
-
"""
|
| 445 |
-
self._data.update(data)
|
| 446 |
-
await self.index_done_callback()
|
| 447 |
-
return data
|
| 448 |
-
|
| 449 |
-
async def get_by_id(self, id: str):
|
| 450 |
-
return self._data.get(id)
|
| 451 |
-
|
| 452 |
-
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]:
|
| 453 |
-
"""Get document status by ID"""
|
| 454 |
-
return self._data.get(doc_id)
|
| 455 |
-
|
| 456 |
-
async def delete(self, doc_ids: list[str]):
|
| 457 |
-
"""Delete document status by IDs"""
|
| 458 |
-
for doc_id in doc_ids:
|
| 459 |
-
self._data.pop(doc_id, None)
|
| 460 |
-
await self.index_done_callback()
|
|
|
|
| 1 |
+
# This file is not needed anymore (TODO: remove)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|