cleaned import
Browse files- lightrag/base.py +11 -9
- lightrag/kg/json_kv_impl.py +1 -3
- lightrag/kg/mongo_impl.py +1 -3
- lightrag/kg/oracle_impl.py +1 -3
- lightrag/kg/postgres_impl.py +1 -3
- lightrag/kg/redis_impl.py +1 -3
- lightrag/kg/tidb_impl.py +1 -3
- lightrag/lightrag.py +45 -43
lightrag/base.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import os
|
2 |
from dataclasses import dataclass, field
|
3 |
from typing import (
|
|
|
4 |
TypedDict,
|
5 |
Union,
|
6 |
Literal,
|
@@ -8,6 +10,8 @@ from typing import (
|
|
8 |
Any,
|
9 |
)
|
10 |
|
|
|
|
|
11 |
|
12 |
from .utils import EmbeddingFunc
|
13 |
|
@@ -99,9 +103,7 @@ class BaseKVStorage(StorageNameSpace):
|
|
99 |
async def drop(self) -> None:
|
100 |
raise NotImplementedError
|
101 |
|
102 |
-
async def get_by_status(
|
103 |
-
self, status: str
|
104 |
-
) -> Union[list[dict[str, Any]], None]:
|
105 |
raise NotImplementedError
|
106 |
|
107 |
|
@@ -148,12 +150,12 @@ class BaseGraphStorage(StorageNameSpace):
|
|
148 |
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
149 |
raise NotImplementedError("Node embedding is not used in lightrag.")
|
150 |
|
151 |
-
async def get_all_labels(self) ->
|
152 |
raise NotImplementedError
|
153 |
|
154 |
async def get_knowledge_graph(
|
155 |
self, node_label: str, max_depth: int = 5
|
156 |
-
) ->
|
157 |
raise NotImplementedError
|
158 |
|
159 |
|
@@ -177,20 +179,20 @@ class DocProcessingStatus:
|
|
177 |
updated_at: str # ISO format timestamp
|
178 |
chunks_count: Optional[int] = None # Number of chunks after splitting
|
179 |
error: Optional[str] = None # Error message if failed
|
180 |
-
metadata:
|
181 |
|
182 |
|
183 |
class DocStatusStorage(BaseKVStorage):
|
184 |
"""Base class for document status storage"""
|
185 |
|
186 |
-
async def get_status_counts(self) ->
|
187 |
"""Get counts of documents in each status"""
|
188 |
raise NotImplementedError
|
189 |
|
190 |
-
async def get_failed_docs(self) ->
|
191 |
"""Get all failed documents"""
|
192 |
raise NotImplementedError
|
193 |
|
194 |
-
async def get_pending_docs(self) ->
|
195 |
"""Get all pending documents"""
|
196 |
raise NotImplementedError
|
|
|
1 |
+
from enum import Enum
|
2 |
import os
|
3 |
from dataclasses import dataclass, field
|
4 |
from typing import (
|
5 |
+
Optional,
|
6 |
TypedDict,
|
7 |
Union,
|
8 |
Literal,
|
|
|
10 |
Any,
|
11 |
)
|
12 |
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
|
16 |
from .utils import EmbeddingFunc
|
17 |
|
|
|
103 |
async def drop(self) -> None:
|
104 |
raise NotImplementedError
|
105 |
|
106 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
107 |
raise NotImplementedError
|
108 |
|
109 |
|
|
|
150 |
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
151 |
raise NotImplementedError("Node embedding is not used in lightrag.")
|
152 |
|
153 |
+
async def get_all_labels(self) -> list[str]:
|
154 |
raise NotImplementedError
|
155 |
|
156 |
async def get_knowledge_graph(
|
157 |
self, node_label: str, max_depth: int = 5
|
158 |
+
) -> dict[str, list[dict]]:
|
159 |
raise NotImplementedError
|
160 |
|
161 |
|
|
|
179 |
updated_at: str # ISO format timestamp
|
180 |
chunks_count: Optional[int] = None # Number of chunks after splitting
|
181 |
error: Optional[str] = None # Error message if failed
|
182 |
+
metadata: dict[str, Any] = field(default_factory=dict) # Additional metadata
|
183 |
|
184 |
|
185 |
class DocStatusStorage(BaseKVStorage):
|
186 |
"""Base class for document status storage"""
|
187 |
|
188 |
+
async def get_status_counts(self) -> dict[str, int]:
|
189 |
"""Get counts of documents in each status"""
|
190 |
raise NotImplementedError
|
191 |
|
192 |
+
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
|
193 |
"""Get all failed documents"""
|
194 |
raise NotImplementedError
|
195 |
|
196 |
+
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
|
197 |
"""Get all pending documents"""
|
198 |
raise NotImplementedError
|
lightrag/kg/json_kv_impl.py
CHANGED
@@ -51,8 +51,6 @@ class JsonKVStorage(BaseKVStorage):
|
|
51 |
async def drop(self) -> None:
|
52 |
self._data = {}
|
53 |
|
54 |
-
async def get_by_status(
|
55 |
-
self, status: str
|
56 |
-
) -> Union[list[dict[str, Any]], None]:
|
57 |
result = [v for _, v in self._data.items() if v["status"] == status]
|
58 |
return result if result else None
|
|
|
51 |
async def drop(self) -> None:
|
52 |
self._data = {}
|
53 |
|
54 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
55 |
result = [v for _, v in self._data.items() if v["status"] == status]
|
56 |
return result if result else None
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -77,9 +77,7 @@ class MongoKVStorage(BaseKVStorage):
|
|
77 |
"""Drop the collection"""
|
78 |
await self._data.drop()
|
79 |
|
80 |
-
async def get_by_status(
|
81 |
-
self, status: str
|
82 |
-
) -> Union[list[dict[str, Any]], None]:
|
83 |
"""Get documents by status and ids"""
|
84 |
return self._data.find({"status": status})
|
85 |
|
|
|
77 |
"""Drop the collection"""
|
78 |
await self._data.drop()
|
79 |
|
80 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
81 |
"""Get documents by status and ids"""
|
82 |
return self._data.find({"status": status})
|
83 |
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -229,9 +229,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
229 |
res = [{k: v} for k, v in dict_res.items()]
|
230 |
return res
|
231 |
|
232 |
-
async def get_by_status(
|
233 |
-
self, status: str
|
234 |
-
) -> Union[list[dict[str, Any]], None]:
|
235 |
"""Specifically for llm_response_cache."""
|
236 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
237 |
params = {"workspace": self.db.workspace, "status": status}
|
|
|
229 |
res = [{k: v} for k, v in dict_res.items()]
|
230 |
return res
|
231 |
|
232 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
233 |
"""Specifically for llm_response_cache."""
|
234 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
235 |
params = {"workspace": self.db.workspace, "status": status}
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -231,9 +231,7 @@ class PGKVStorage(BaseKVStorage):
|
|
231 |
else:
|
232 |
return await self.db.query(sql, params, multirows=True)
|
233 |
|
234 |
-
async def get_by_status(
|
235 |
-
self, status: str
|
236 |
-
) -> Union[list[dict[str, Any]], None]:
|
237 |
"""Specifically for llm_response_cache."""
|
238 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
239 |
params = {"workspace": self.db.workspace, "status": status}
|
|
|
231 |
else:
|
232 |
return await self.db.query(sql, params, multirows=True)
|
233 |
|
234 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
235 |
"""Specifically for llm_response_cache."""
|
236 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
237 |
params = {"workspace": self.db.workspace, "status": status}
|
lightrag/kg/redis_impl.py
CHANGED
@@ -59,9 +59,7 @@ class RedisKVStorage(BaseKVStorage):
|
|
59 |
if keys:
|
60 |
await self._redis.delete(*keys)
|
61 |
|
62 |
-
async def get_by_status(
|
63 |
-
self, status: str
|
64 |
-
) -> Union[list[dict[str, Any]], None]:
|
65 |
pipe = self._redis.pipeline()
|
66 |
for key in await self._redis.keys(f"{self.namespace}:*"):
|
67 |
pipe.hgetall(key)
|
|
|
59 |
if keys:
|
60 |
await self._redis.delete(*keys)
|
61 |
|
62 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
63 |
pipe = self._redis.pipeline()
|
64 |
for key in await self._redis.keys(f"{self.namespace}:*"):
|
65 |
pipe.hgetall(key)
|
lightrag/kg/tidb_impl.py
CHANGED
@@ -322,9 +322,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
322 |
merge_sql = SQL_TEMPLATES["insert_relationship"]
|
323 |
await self.db.execute(merge_sql, data)
|
324 |
|
325 |
-
async def get_by_status(
|
326 |
-
self, status: str
|
327 |
-
) -> Union[list[dict[str, Any]], None]:
|
328 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
329 |
params = {"workspace": self.db.workspace, "status": status}
|
330 |
return await self.db.query(SQL, params, multirows=True)
|
|
|
322 |
merge_sql = SQL_TEMPLATES["insert_relationship"]
|
323 |
await self.db.execute(merge_sql, data)
|
324 |
|
325 |
+
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
|
|
|
326 |
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
327 |
params = {"workspace": self.db.workspace, "status": status}
|
328 |
return await self.db.query(SQL, params, multirows=True)
|
lightrag/lightrag.py
CHANGED
@@ -4,11 +4,16 @@ from tqdm.asyncio import tqdm as tqdm_async
|
|
4 |
from dataclasses import asdict, dataclass, field
|
5 |
from datetime import datetime
|
6 |
from functools import partial
|
7 |
-
from typing import Any, Type, Union
|
8 |
import traceback
|
9 |
from .operate import (
|
10 |
chunking_by_token_size,
|
11 |
-
extract_entities
|
|
|
|
|
|
|
|
|
|
|
12 |
# local_query,global_query,hybrid_query,,
|
13 |
)
|
14 |
|
@@ -19,18 +24,21 @@ from .utils import (
|
|
19 |
convert_response_to_json,
|
20 |
logger,
|
21 |
set_logger,
|
22 |
-
statistic_data
|
23 |
)
|
24 |
from .base import (
|
25 |
BaseGraphStorage,
|
26 |
BaseKVStorage,
|
27 |
BaseVectorStorage,
|
28 |
DocStatus,
|
|
|
|
|
29 |
)
|
30 |
|
31 |
from .namespace import NameSpace, make_namespace
|
32 |
|
33 |
from .prompt import GRAPH_FIELD_SEP
|
|
|
34 |
STORAGES = {
|
35 |
"NetworkXStorage": ".kg.networkx_impl",
|
36 |
"JsonKVStorage": ".kg.json_kv_impl",
|
@@ -351,9 +359,10 @@ class LightRAG:
|
|
351 |
)
|
352 |
|
353 |
async def ainsert(
|
354 |
-
self,
|
355 |
-
|
356 |
-
|
|
|
357 |
):
|
358 |
"""Insert documents with checkpoint support
|
359 |
|
@@ -368,7 +377,6 @@ class LightRAG:
|
|
368 |
await self.apipeline_process_chunks(split_by_character, split_by_character_only)
|
369 |
await self.apipeline_process_extract_graph()
|
370 |
|
371 |
-
|
372 |
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
373 |
loop = always_get_an_event_loop()
|
374 |
return loop.run_until_complete(
|
@@ -482,31 +490,27 @@ class LightRAG:
|
|
482 |
logger.info(f"Stored {len(new_docs)} new unique documents")
|
483 |
|
484 |
async def apipeline_process_chunks(
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
"""Get pendding documents, split into chunks,insert chunks"""
|
490 |
# 1. get all pending and failed documents
|
491 |
to_process_doc_keys: list[str] = []
|
492 |
|
493 |
# Process failes
|
494 |
-
to_process_docs = await self.full_docs.get_by_status(
|
495 |
-
status=DocStatus.FAILED
|
496 |
-
)
|
497 |
if to_process_docs:
|
498 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
499 |
-
|
500 |
# Process Pending
|
501 |
-
to_process_docs = await self.full_docs.get_by_status(
|
502 |
-
status=DocStatus.PENDING
|
503 |
-
)
|
504 |
if to_process_docs:
|
505 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
506 |
|
507 |
if not to_process_doc_keys:
|
508 |
logger.info("All documents have been processed or are duplicates")
|
509 |
-
return
|
510 |
|
511 |
full_docs_ids = await self.full_docs.get_by_ids(to_process_doc_keys)
|
512 |
new_docs = {}
|
@@ -515,8 +519,8 @@ class LightRAG:
|
|
515 |
|
516 |
if not new_docs:
|
517 |
logger.info("All documents have been processed or are duplicates")
|
518 |
-
return
|
519 |
-
|
520 |
# 2. split docs into chunks, insert chunks, update doc status
|
521 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
522 |
for i in range(0, len(new_docs), batch_size):
|
@@ -526,11 +530,11 @@ class LightRAG:
|
|
526 |
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
527 |
):
|
528 |
doc_status: dict[str, Any] = {
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
}
|
535 |
try:
|
536 |
await self.doc_status.upsert({doc_id: doc_status})
|
@@ -564,14 +568,16 @@ class LightRAG:
|
|
564 |
|
565 |
except Exception as e:
|
566 |
doc_status.update(
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
await self.doc_status.upsert({doc_id: doc_status})
|
574 |
-
logger.error(
|
|
|
|
|
575 |
continue
|
576 |
|
577 |
async def apipeline_process_extract_graph(self):
|
@@ -580,22 +586,18 @@ class LightRAG:
|
|
580 |
to_process_doc_keys: list[str] = []
|
581 |
|
582 |
# Process failes
|
583 |
-
to_process_docs = await self.full_docs.get_by_status(
|
584 |
-
status=DocStatus.FAILED
|
585 |
-
)
|
586 |
if to_process_docs:
|
587 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
588 |
-
|
589 |
# Process Pending
|
590 |
-
to_process_docs = await self.full_docs.get_by_status(
|
591 |
-
status=DocStatus.PENDING
|
592 |
-
)
|
593 |
if to_process_docs:
|
594 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
595 |
|
596 |
if not to_process_doc_keys:
|
597 |
logger.info("All documents have been processed or are duplicates")
|
598 |
-
return
|
599 |
|
600 |
# Process documents in batches
|
601 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
@@ -606,7 +608,7 @@ class LightRAG:
|
|
606 |
|
607 |
async def process_chunk(chunk_id: str):
|
608 |
async with semaphore:
|
609 |
-
chunks:dict[str, Any] = {
|
610 |
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
611 |
}
|
612 |
# Extract and store entities and relationships
|
@@ -1051,7 +1053,7 @@ class LightRAG:
|
|
1051 |
return content
|
1052 |
return content[:max_length] + "..."
|
1053 |
|
1054 |
-
async def get_processing_status(self) ->
|
1055 |
"""Get current document processing status counts
|
1056 |
|
1057 |
Returns:
|
|
|
4 |
from dataclasses import asdict, dataclass, field
|
5 |
from datetime import datetime
|
6 |
from functools import partial
|
7 |
+
from typing import Any, Type, Union, cast
|
8 |
import traceback
|
9 |
from .operate import (
|
10 |
chunking_by_token_size,
|
11 |
+
extract_entities,
|
12 |
+
extract_keywords_only,
|
13 |
+
kg_query,
|
14 |
+
kg_query_with_keywords,
|
15 |
+
mix_kg_vector_query,
|
16 |
+
naive_query,
|
17 |
# local_query,global_query,hybrid_query,,
|
18 |
)
|
19 |
|
|
|
24 |
convert_response_to_json,
|
25 |
logger,
|
26 |
set_logger,
|
27 |
+
statistic_data,
|
28 |
)
|
29 |
from .base import (
|
30 |
BaseGraphStorage,
|
31 |
BaseKVStorage,
|
32 |
BaseVectorStorage,
|
33 |
DocStatus,
|
34 |
+
QueryParam,
|
35 |
+
StorageNameSpace,
|
36 |
)
|
37 |
|
38 |
from .namespace import NameSpace, make_namespace
|
39 |
|
40 |
from .prompt import GRAPH_FIELD_SEP
|
41 |
+
|
42 |
STORAGES = {
|
43 |
"NetworkXStorage": ".kg.networkx_impl",
|
44 |
"JsonKVStorage": ".kg.json_kv_impl",
|
|
|
359 |
)
|
360 |
|
361 |
async def ainsert(
|
362 |
+
self,
|
363 |
+
string_or_strings: Union[str, list[str]],
|
364 |
+
split_by_character: str | None = None,
|
365 |
+
split_by_character_only: bool = False,
|
366 |
):
|
367 |
"""Insert documents with checkpoint support
|
368 |
|
|
|
377 |
await self.apipeline_process_chunks(split_by_character, split_by_character_only)
|
378 |
await self.apipeline_process_extract_graph()
|
379 |
|
|
|
380 |
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
381 |
loop = always_get_an_event_loop()
|
382 |
return loop.run_until_complete(
|
|
|
490 |
logger.info(f"Stored {len(new_docs)} new unique documents")
|
491 |
|
492 |
async def apipeline_process_chunks(
|
493 |
+
self,
|
494 |
+
split_by_character: str | None = None,
|
495 |
+
split_by_character_only: bool = False,
|
496 |
+
) -> None:
|
497 |
"""Get pendding documents, split into chunks,insert chunks"""
|
498 |
# 1. get all pending and failed documents
|
499 |
to_process_doc_keys: list[str] = []
|
500 |
|
501 |
# Process failes
|
502 |
+
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.FAILED)
|
|
|
|
|
503 |
if to_process_docs:
|
504 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
505 |
+
|
506 |
# Process Pending
|
507 |
+
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.PENDING)
|
|
|
|
|
508 |
if to_process_docs:
|
509 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
510 |
|
511 |
if not to_process_doc_keys:
|
512 |
logger.info("All documents have been processed or are duplicates")
|
513 |
+
return
|
514 |
|
515 |
full_docs_ids = await self.full_docs.get_by_ids(to_process_doc_keys)
|
516 |
new_docs = {}
|
|
|
519 |
|
520 |
if not new_docs:
|
521 |
logger.info("All documents have been processed or are duplicates")
|
522 |
+
return
|
523 |
+
|
524 |
# 2. split docs into chunks, insert chunks, update doc status
|
525 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
526 |
for i in range(0, len(new_docs), batch_size):
|
|
|
530 |
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
531 |
):
|
532 |
doc_status: dict[str, Any] = {
|
533 |
+
"content_summary": doc["content_summary"],
|
534 |
+
"content_length": doc["content_length"],
|
535 |
+
"status": DocStatus.PROCESSING,
|
536 |
+
"created_at": doc["created_at"],
|
537 |
+
"updated_at": datetime.now().isoformat(),
|
538 |
}
|
539 |
try:
|
540 |
await self.doc_status.upsert({doc_id: doc_status})
|
|
|
568 |
|
569 |
except Exception as e:
|
570 |
doc_status.update(
|
571 |
+
{
|
572 |
+
"status": DocStatus.FAILED,
|
573 |
+
"error": str(e),
|
574 |
+
"updated_at": datetime.now().isoformat(),
|
575 |
+
}
|
576 |
+
)
|
577 |
await self.doc_status.upsert({doc_id: doc_status})
|
578 |
+
logger.error(
|
579 |
+
f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
580 |
+
)
|
581 |
continue
|
582 |
|
583 |
async def apipeline_process_extract_graph(self):
|
|
|
586 |
to_process_doc_keys: list[str] = []
|
587 |
|
588 |
# Process failes
|
589 |
+
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.FAILED)
|
|
|
|
|
590 |
if to_process_docs:
|
591 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
592 |
+
|
593 |
# Process Pending
|
594 |
+
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.PENDING)
|
|
|
|
|
595 |
if to_process_docs:
|
596 |
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
597 |
|
598 |
if not to_process_doc_keys:
|
599 |
logger.info("All documents have been processed or are duplicates")
|
600 |
+
return
|
601 |
|
602 |
# Process documents in batches
|
603 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
|
|
608 |
|
609 |
async def process_chunk(chunk_id: str):
|
610 |
async with semaphore:
|
611 |
+
chunks: dict[str, Any] = {
|
612 |
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
613 |
}
|
614 |
# Extract and store entities and relationships
|
|
|
1053 |
return content
|
1054 |
return content[:max_length] + "..."
|
1055 |
|
1056 |
+
async def get_processing_status(self) -> dict[str, int]:
|
1057 |
"""Get current document processing status counts
|
1058 |
|
1059 |
Returns:
|