Ben Luo
commited on
Commit
·
5f72ddb
1
Parent(s):
030c559
Adding Tongyi OpenAI demo to use Qwen
Browse filesqwen-turbo-latest (currently Qwen3) is supported by now
Signed-off-by: Ben Luo <bn0418@gmail.com>
examples/lightrag_tongyi_openai_demo.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.utils import EmbeddingFunc
|
5 |
+
import numpy as np
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import logging
|
8 |
+
from openai import OpenAI
|
9 |
+
from lightrag.kg.shared_storage import initialize_pipeline_status
|
10 |
+
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
LLM_MODEL = os.environ.get("LLM_MODEL", "qwen-turbo-latest")
|
16 |
+
LLM_BINDING_HOST = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
17 |
+
LLM_BINDING_API_KEY = os.getenv("LLM_BINDING_API_KEY")
|
18 |
+
|
19 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-v3")
|
20 |
+
EMBEDDING_BINDING_HOST = os.getenv("EMBEDDING_BINDING_HOST", LLM_BINDING_HOST)
|
21 |
+
EMBEDDING_BINDING_API_KEY = os.getenv("EMBEDDING_BINDING_API_KEY", LLM_BINDING_API_KEY)
|
22 |
+
EMBEDDING_DIM = int(os.environ.get("EMBEDDING_DIM", 1024))
|
23 |
+
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
24 |
+
EMBEDDING_MAX_BATCH_SIZE = int(os.environ.get("EMBEDDING_MAX_BATCH_SIZE", 10))
|
25 |
+
|
26 |
+
print(f"LLM_MODEL: {LLM_MODEL}")
|
27 |
+
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
28 |
+
|
29 |
+
WORKING_DIR = "./dickens"
|
30 |
+
|
31 |
+
if os.path.exists(WORKING_DIR):
|
32 |
+
import shutil
|
33 |
+
|
34 |
+
shutil.rmtree(WORKING_DIR)
|
35 |
+
|
36 |
+
os.mkdir(WORKING_DIR)
|
37 |
+
|
38 |
+
|
39 |
+
async def llm_model_func(
|
40 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
41 |
+
) -> str:
|
42 |
+
client = OpenAI(
|
43 |
+
api_key=LLM_BINDING_API_KEY,
|
44 |
+
base_url=LLM_BINDING_HOST,
|
45 |
+
)
|
46 |
+
|
47 |
+
messages = []
|
48 |
+
if system_prompt:
|
49 |
+
messages.append({"role": "system", "content": system_prompt})
|
50 |
+
if history_messages:
|
51 |
+
messages.extend(history_messages)
|
52 |
+
messages.append({"role": "user", "content": prompt})
|
53 |
+
|
54 |
+
chat_completion = client.chat.completions.create(
|
55 |
+
model=LLM_MODEL,
|
56 |
+
messages=messages,
|
57 |
+
temperature=kwargs.get("temperature", 0),
|
58 |
+
top_p=kwargs.get("top_p", 1),
|
59 |
+
n=kwargs.get("n", 1),
|
60 |
+
extra_body={"enable_thinking": False},
|
61 |
+
)
|
62 |
+
return chat_completion.choices[0].message.content
|
63 |
+
|
64 |
+
|
65 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
66 |
+
client = OpenAI(
|
67 |
+
api_key=EMBEDDING_BINDING_API_KEY,
|
68 |
+
base_url=EMBEDDING_BINDING_HOST,
|
69 |
+
)
|
70 |
+
|
71 |
+
print("##### embedding: texts: %d #####" % len(texts))
|
72 |
+
max_batch_size = EMBEDDING_MAX_BATCH_SIZE
|
73 |
+
embeddings = []
|
74 |
+
for i in range(0, len(texts), max_batch_size):
|
75 |
+
batch = texts[i : i + max_batch_size]
|
76 |
+
embedding = client.embeddings.create(model=EMBEDDING_MODEL, input=batch)
|
77 |
+
embeddings += [item.embedding for item in embedding.data]
|
78 |
+
|
79 |
+
return np.array(embeddings)
|
80 |
+
|
81 |
+
|
82 |
+
async def test_funcs():
|
83 |
+
result = await llm_model_func("How are you?")
|
84 |
+
print("Resposta do llm_model_func: ", result)
|
85 |
+
|
86 |
+
result = await embedding_func(["How are you?"])
|
87 |
+
print("Resultado do embedding_func: ", result.shape)
|
88 |
+
print("Dimensão da embedding: ", result.shape[1])
|
89 |
+
|
90 |
+
|
91 |
+
asyncio.run(test_funcs())
|
92 |
+
|
93 |
+
|
94 |
+
async def initialize_rag():
|
95 |
+
rag = LightRAG(
|
96 |
+
working_dir=WORKING_DIR,
|
97 |
+
llm_model_func=llm_model_func,
|
98 |
+
embedding_func=EmbeddingFunc(
|
99 |
+
embedding_dim=EMBEDDING_DIM,
|
100 |
+
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
101 |
+
func=embedding_func,
|
102 |
+
),
|
103 |
+
)
|
104 |
+
|
105 |
+
await rag.initialize_storages()
|
106 |
+
await initialize_pipeline_status()
|
107 |
+
|
108 |
+
return rag
|
109 |
+
|
110 |
+
|
111 |
+
def main():
|
112 |
+
rag = asyncio.run(initialize_rag())
|
113 |
+
|
114 |
+
with open("./book.txt", "r", encoding="utf-8") as f:
|
115 |
+
rag.insert(f.read())
|
116 |
+
|
117 |
+
query_text = "What are the main themes?"
|
118 |
+
|
119 |
+
print("Result (Naive):")
|
120 |
+
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
121 |
+
|
122 |
+
print("\nResult (Local):")
|
123 |
+
print(rag.query(query_text, param=QueryParam(mode="local")))
|
124 |
+
|
125 |
+
print("\nResult (Global):")
|
126 |
+
print(rag.query(query_text, param=QueryParam(mode="global")))
|
127 |
+
|
128 |
+
print("\nResult (Hybrid):")
|
129 |
+
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
130 |
+
|
131 |
+
print("\nResult (mix):")
|
132 |
+
print(rag.query(query_text, param=QueryParam(mode="mix")))
|
133 |
+
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
main()
|