yangdx
commited on
Commit
·
4aad236
1
Parent(s):
a076e42
Update webui assets
Browse files
lightrag/api/webui/assets/{index-C-CHRwmZ.js → index-BItOVH8B.js}
RENAMED
Binary files a/lightrag/api/webui/assets/index-C-CHRwmZ.js and b/lightrag/api/webui/assets/index-BItOVH8B.js differ
|
|
lightrag/api/webui/index.html
CHANGED
Binary files a/lightrag/api/webui/index.html and b/lightrag/api/webui/index.html differ
|
|
lightrag/llm/anthropic.py
CHANGED
@@ -38,11 +38,14 @@ from lightrag.utils import (
|
|
38 |
)
|
39 |
from lightrag.api import __api_version__
|
40 |
|
|
|
41 |
# Custom exception for retry mechanism
|
42 |
class InvalidResponseError(Exception):
|
43 |
"""Custom exception class for triggering retry mechanism"""
|
|
|
44 |
pass
|
45 |
|
|
|
46 |
# Core Anthropic completion function with retry
|
47 |
@retry(
|
48 |
stop=stop_after_attempt(3),
|
@@ -96,10 +99,7 @@ async def anthropic_complete_if_cache(
|
|
96 |
|
97 |
try:
|
98 |
response = await anthropic_async_client.messages.create(
|
99 |
-
model=model,
|
100 |
-
messages=messages,
|
101 |
-
stream=True,
|
102 |
-
**kwargs
|
103 |
)
|
104 |
except APIConnectionError as e:
|
105 |
logger.error(f"Anthropic API Connection Error: {e}")
|
@@ -119,7 +119,11 @@ async def anthropic_complete_if_cache(
|
|
119 |
async def stream_response():
|
120 |
try:
|
121 |
async for event in response:
|
122 |
-
content =
|
|
|
|
|
|
|
|
|
123 |
if content is None:
|
124 |
continue
|
125 |
if r"\u" in content:
|
@@ -131,6 +135,7 @@ async def anthropic_complete_if_cache(
|
|
131 |
|
132 |
return stream_response()
|
133 |
|
|
|
134 |
# Generic Anthropic completion function
|
135 |
async def anthropic_complete(
|
136 |
prompt: str,
|
@@ -149,6 +154,7 @@ async def anthropic_complete(
|
|
149 |
**kwargs,
|
150 |
)
|
151 |
|
|
|
152 |
# Claude 3 Opus specific completion
|
153 |
async def claude_3_opus_complete(
|
154 |
prompt: str,
|
@@ -166,6 +172,7 @@ async def claude_3_opus_complete(
|
|
166 |
**kwargs,
|
167 |
)
|
168 |
|
|
|
169 |
# Claude 3 Sonnet specific completion
|
170 |
async def claude_3_sonnet_complete(
|
171 |
prompt: str,
|
@@ -183,6 +190,7 @@ async def claude_3_sonnet_complete(
|
|
183 |
**kwargs,
|
184 |
)
|
185 |
|
|
|
186 |
# Claude 3 Haiku specific completion
|
187 |
async def claude_3_haiku_complete(
|
188 |
prompt: str,
|
@@ -200,6 +208,7 @@ async def claude_3_haiku_complete(
|
|
200 |
**kwargs,
|
201 |
)
|
202 |
|
|
|
203 |
# Embedding function (placeholder, as Anthropic does not provide embeddings)
|
204 |
@retry(
|
205 |
stop=stop_after_attempt(3),
|
@@ -216,13 +225,13 @@ async def anthropic_embed(
|
|
216 |
) -> np.ndarray:
|
217 |
"""
|
218 |
Generate embeddings using Voyage AI since Anthropic doesn't provide native embedding support.
|
219 |
-
|
220 |
Args:
|
221 |
texts: List of text strings to embed
|
222 |
model: Voyage AI model name (e.g., "voyage-3", "voyage-3-large", "voyage-code-3")
|
223 |
base_url: Optional custom base URL (not used for Voyage AI)
|
224 |
api_key: API key for Voyage AI (defaults to VOYAGE_API_KEY environment variable)
|
225 |
-
|
226 |
Returns:
|
227 |
numpy array of shape (len(texts), embedding_dimension) containing the embeddings
|
228 |
"""
|
@@ -230,42 +239,73 @@ async def anthropic_embed(
|
|
230 |
api_key = os.environ.get("VOYAGE_API_KEY")
|
231 |
if not api_key:
|
232 |
logger.error("VOYAGE_API_KEY environment variable not set")
|
233 |
-
raise ValueError(
|
|
|
|
|
234 |
|
235 |
try:
|
236 |
# Initialize Voyage AI client
|
237 |
voyage_client = voyageai.Client(api_key=api_key)
|
238 |
-
|
239 |
# Get embeddings
|
240 |
result = voyage_client.embed(
|
241 |
texts,
|
242 |
model=model,
|
243 |
-
input_type="document" # Assuming document context; could be made configurable
|
244 |
)
|
245 |
-
|
246 |
# Convert list of embeddings to numpy array
|
247 |
embeddings = np.array(result.embeddings, dtype=np.float32)
|
248 |
-
|
249 |
logger.debug(f"Generated embeddings for {len(texts)} texts using {model}")
|
250 |
verbose_debug(f"Embedding shape: {embeddings.shape}")
|
251 |
-
|
252 |
return embeddings
|
253 |
|
254 |
except Exception as e:
|
255 |
logger.error(f"Voyage AI embedding failed: {str(e)}")
|
256 |
raise
|
257 |
|
|
|
258 |
# Optional: a helper function to get available embedding models
|
259 |
def get_available_embedding_models() -> dict[str, dict]:
|
260 |
"""
|
261 |
Returns a dictionary of available Voyage AI embedding models and their properties.
|
262 |
"""
|
263 |
return {
|
264 |
-
"voyage-3-large": {
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
"voyage-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
}
|
|
|
38 |
)
|
39 |
from lightrag.api import __api_version__
|
40 |
|
41 |
+
|
42 |
# Custom exception for retry mechanism
|
43 |
class InvalidResponseError(Exception):
|
44 |
"""Custom exception class for triggering retry mechanism"""
|
45 |
+
|
46 |
pass
|
47 |
|
48 |
+
|
49 |
# Core Anthropic completion function with retry
|
50 |
@retry(
|
51 |
stop=stop_after_attempt(3),
|
|
|
99 |
|
100 |
try:
|
101 |
response = await anthropic_async_client.messages.create(
|
102 |
+
model=model, messages=messages, stream=True, **kwargs
|
|
|
|
|
|
|
103 |
)
|
104 |
except APIConnectionError as e:
|
105 |
logger.error(f"Anthropic API Connection Error: {e}")
|
|
|
119 |
async def stream_response():
|
120 |
try:
|
121 |
async for event in response:
|
122 |
+
content = (
|
123 |
+
event.delta.text
|
124 |
+
if hasattr(event, "delta") and event.delta.text
|
125 |
+
else None
|
126 |
+
)
|
127 |
if content is None:
|
128 |
continue
|
129 |
if r"\u" in content:
|
|
|
135 |
|
136 |
return stream_response()
|
137 |
|
138 |
+
|
139 |
# Generic Anthropic completion function
|
140 |
async def anthropic_complete(
|
141 |
prompt: str,
|
|
|
154 |
**kwargs,
|
155 |
)
|
156 |
|
157 |
+
|
158 |
# Claude 3 Opus specific completion
|
159 |
async def claude_3_opus_complete(
|
160 |
prompt: str,
|
|
|
172 |
**kwargs,
|
173 |
)
|
174 |
|
175 |
+
|
176 |
# Claude 3 Sonnet specific completion
|
177 |
async def claude_3_sonnet_complete(
|
178 |
prompt: str,
|
|
|
190 |
**kwargs,
|
191 |
)
|
192 |
|
193 |
+
|
194 |
# Claude 3 Haiku specific completion
|
195 |
async def claude_3_haiku_complete(
|
196 |
prompt: str,
|
|
|
208 |
**kwargs,
|
209 |
)
|
210 |
|
211 |
+
|
212 |
# Embedding function (placeholder, as Anthropic does not provide embeddings)
|
213 |
@retry(
|
214 |
stop=stop_after_attempt(3),
|
|
|
225 |
) -> np.ndarray:
|
226 |
"""
|
227 |
Generate embeddings using Voyage AI since Anthropic doesn't provide native embedding support.
|
228 |
+
|
229 |
Args:
|
230 |
texts: List of text strings to embed
|
231 |
model: Voyage AI model name (e.g., "voyage-3", "voyage-3-large", "voyage-code-3")
|
232 |
base_url: Optional custom base URL (not used for Voyage AI)
|
233 |
api_key: API key for Voyage AI (defaults to VOYAGE_API_KEY environment variable)
|
234 |
+
|
235 |
Returns:
|
236 |
numpy array of shape (len(texts), embedding_dimension) containing the embeddings
|
237 |
"""
|
|
|
239 |
api_key = os.environ.get("VOYAGE_API_KEY")
|
240 |
if not api_key:
|
241 |
logger.error("VOYAGE_API_KEY environment variable not set")
|
242 |
+
raise ValueError(
|
243 |
+
"VOYAGE_API_KEY environment variable is required for embeddings"
|
244 |
+
)
|
245 |
|
246 |
try:
|
247 |
# Initialize Voyage AI client
|
248 |
voyage_client = voyageai.Client(api_key=api_key)
|
249 |
+
|
250 |
# Get embeddings
|
251 |
result = voyage_client.embed(
|
252 |
texts,
|
253 |
model=model,
|
254 |
+
input_type="document", # Assuming document context; could be made configurable
|
255 |
)
|
256 |
+
|
257 |
# Convert list of embeddings to numpy array
|
258 |
embeddings = np.array(result.embeddings, dtype=np.float32)
|
259 |
+
|
260 |
logger.debug(f"Generated embeddings for {len(texts)} texts using {model}")
|
261 |
verbose_debug(f"Embedding shape: {embeddings.shape}")
|
262 |
+
|
263 |
return embeddings
|
264 |
|
265 |
except Exception as e:
|
266 |
logger.error(f"Voyage AI embedding failed: {str(e)}")
|
267 |
raise
|
268 |
|
269 |
+
|
270 |
# Optional: a helper function to get available embedding models
|
271 |
def get_available_embedding_models() -> dict[str, dict]:
|
272 |
"""
|
273 |
Returns a dictionary of available Voyage AI embedding models and their properties.
|
274 |
"""
|
275 |
return {
|
276 |
+
"voyage-3-large": {
|
277 |
+
"context_length": 32000,
|
278 |
+
"dimension": 1024,
|
279 |
+
"description": "Best general-purpose and multilingual",
|
280 |
+
},
|
281 |
+
"voyage-3": {
|
282 |
+
"context_length": 32000,
|
283 |
+
"dimension": 1024,
|
284 |
+
"description": "General-purpose and multilingual",
|
285 |
+
},
|
286 |
+
"voyage-3-lite": {
|
287 |
+
"context_length": 32000,
|
288 |
+
"dimension": 512,
|
289 |
+
"description": "Optimized for latency and cost",
|
290 |
+
},
|
291 |
+
"voyage-code-3": {
|
292 |
+
"context_length": 32000,
|
293 |
+
"dimension": 1024,
|
294 |
+
"description": "Optimized for code",
|
295 |
+
},
|
296 |
+
"voyage-finance-2": {
|
297 |
+
"context_length": 32000,
|
298 |
+
"dimension": 1024,
|
299 |
+
"description": "Optimized for finance",
|
300 |
+
},
|
301 |
+
"voyage-law-2": {
|
302 |
+
"context_length": 16000,
|
303 |
+
"dimension": 1024,
|
304 |
+
"description": "Optimized for legal",
|
305 |
+
},
|
306 |
+
"voyage-multimodal-3": {
|
307 |
+
"context_length": 32000,
|
308 |
+
"dimension": 1024,
|
309 |
+
"description": "Multimodal text and images",
|
310 |
+
},
|
311 |
}
|