cleaned insert by using pipe
Browse files- lightrag/lightrag.py +106 -232
lightrag/lightrag.py
CHANGED
|
@@ -4,17 +4,12 @@ from tqdm.asyncio import tqdm as tqdm_async
|
|
| 4 |
from dataclasses import asdict, dataclass, field
|
| 5 |
from datetime import datetime
|
| 6 |
from functools import partial
|
| 7 |
-
from typing import
|
| 8 |
-
|
| 9 |
from .operate import (
|
| 10 |
chunking_by_token_size,
|
| 11 |
-
extract_entities
|
| 12 |
-
# local_query,global_query,hybrid_query
|
| 13 |
-
kg_query,
|
| 14 |
-
naive_query,
|
| 15 |
-
mix_kg_vector_query,
|
| 16 |
-
extract_keywords_only,
|
| 17 |
-
kg_query_with_keywords,
|
| 18 |
)
|
| 19 |
|
| 20 |
from .utils import (
|
|
@@ -30,8 +25,6 @@ from .base import (
|
|
| 30 |
BaseGraphStorage,
|
| 31 |
BaseKVStorage,
|
| 32 |
BaseVectorStorage,
|
| 33 |
-
StorageNameSpace,
|
| 34 |
-
QueryParam,
|
| 35 |
DocStatus,
|
| 36 |
)
|
| 37 |
|
|
@@ -176,7 +169,7 @@ class LightRAG:
|
|
| 176 |
enable_llm_cache_for_entity_extract: bool = True
|
| 177 |
|
| 178 |
# extension
|
| 179 |
-
addon_params: dict = field(default_factory=dict)
|
| 180 |
convert_response_to_json_func: callable = convert_response_to_json
|
| 181 |
|
| 182 |
# Add new field for document status storage type
|
|
@@ -251,7 +244,7 @@ class LightRAG:
|
|
| 251 |
),
|
| 252 |
embedding_func=self.embedding_func,
|
| 253 |
)
|
| 254 |
-
self.text_chunks:
|
| 255 |
namespace=make_namespace(
|
| 256 |
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
|
| 257 |
),
|
|
@@ -281,7 +274,7 @@ class LightRAG:
|
|
| 281 |
embedding_func=self.embedding_func,
|
| 282 |
meta_fields={"src_id", "tgt_id"},
|
| 283 |
)
|
| 284 |
-
self.chunks_vdb = self.vector_db_storage_cls(
|
| 285 |
namespace=make_namespace(
|
| 286 |
self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS
|
| 287 |
),
|
|
@@ -310,7 +303,7 @@ class LightRAG:
|
|
| 310 |
|
| 311 |
# Initialize document status storage
|
| 312 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
| 313 |
-
self.doc_status = self.doc_status_storage_cls(
|
| 314 |
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
|
| 315 |
global_config=global_config,
|
| 316 |
embedding_func=None,
|
|
@@ -359,7 +352,9 @@ class LightRAG:
|
|
| 359 |
)
|
| 360 |
|
| 361 |
async def ainsert(
|
| 362 |
-
self, string_or_strings,
|
|
|
|
|
|
|
| 363 |
):
|
| 364 |
"""Insert documents with checkpoint support
|
| 365 |
|
|
@@ -370,154 +365,10 @@ class LightRAG:
|
|
| 370 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
| 371 |
split_by_character is None, this parameter is ignored.
|
| 372 |
"""
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
# 1. Remove duplicate contents from the list
|
| 377 |
-
unique_contents = list(set(doc.strip() for doc in string_or_strings))
|
| 378 |
-
|
| 379 |
-
# 2. Generate document IDs and initial status
|
| 380 |
-
new_docs = {
|
| 381 |
-
compute_mdhash_id(content, prefix="doc-"): {
|
| 382 |
-
"content": content,
|
| 383 |
-
"content_summary": self._get_content_summary(content),
|
| 384 |
-
"content_length": len(content),
|
| 385 |
-
"status": DocStatus.PENDING,
|
| 386 |
-
"created_at": datetime.now().isoformat(),
|
| 387 |
-
"updated_at": datetime.now().isoformat(),
|
| 388 |
-
}
|
| 389 |
-
for content in unique_contents
|
| 390 |
-
}
|
| 391 |
|
| 392 |
-
# 3. Filter out already processed documents
|
| 393 |
-
# _add_doc_keys = await self.doc_status.filter_keys(list(new_docs.keys()))
|
| 394 |
-
_add_doc_keys = set()
|
| 395 |
-
for doc_id in new_docs.keys():
|
| 396 |
-
current_doc = await self.doc_status.get_by_id(doc_id)
|
| 397 |
-
|
| 398 |
-
if current_doc is None:
|
| 399 |
-
_add_doc_keys.add(doc_id)
|
| 400 |
-
continue # skip to the next doc_id
|
| 401 |
-
|
| 402 |
-
status = None
|
| 403 |
-
if isinstance(current_doc, dict):
|
| 404 |
-
status = current_doc["status"]
|
| 405 |
-
else:
|
| 406 |
-
status = current_doc.status
|
| 407 |
-
|
| 408 |
-
if status == DocStatus.FAILED:
|
| 409 |
-
_add_doc_keys.add(doc_id)
|
| 410 |
-
|
| 411 |
-
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
|
| 412 |
-
|
| 413 |
-
if not new_docs:
|
| 414 |
-
logger.info("All documents have been processed or are duplicates")
|
| 415 |
-
return
|
| 416 |
-
|
| 417 |
-
logger.info(f"Processing {len(new_docs)} new unique documents")
|
| 418 |
-
|
| 419 |
-
# Process documents in batches
|
| 420 |
-
batch_size = self.addon_params.get("insert_batch_size", 10)
|
| 421 |
-
for i in range(0, len(new_docs), batch_size):
|
| 422 |
-
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
| 423 |
-
|
| 424 |
-
for doc_id, doc in tqdm_async(
|
| 425 |
-
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
| 426 |
-
):
|
| 427 |
-
try:
|
| 428 |
-
# Update status to processing
|
| 429 |
-
doc_status = {
|
| 430 |
-
"content_summary": doc["content_summary"],
|
| 431 |
-
"content_length": doc["content_length"],
|
| 432 |
-
"status": DocStatus.PROCESSING,
|
| 433 |
-
"created_at": doc["created_at"],
|
| 434 |
-
"updated_at": datetime.now().isoformat(),
|
| 435 |
-
}
|
| 436 |
-
await self.doc_status.upsert({doc_id: doc_status})
|
| 437 |
-
|
| 438 |
-
# Generate chunks from document
|
| 439 |
-
chunks = {
|
| 440 |
-
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
| 441 |
-
**dp,
|
| 442 |
-
"full_doc_id": doc_id,
|
| 443 |
-
}
|
| 444 |
-
for dp in self.chunking_func(
|
| 445 |
-
doc["content"],
|
| 446 |
-
split_by_character=split_by_character,
|
| 447 |
-
split_by_character_only=split_by_character_only,
|
| 448 |
-
overlap_token_size=self.chunk_overlap_token_size,
|
| 449 |
-
max_token_size=self.chunk_token_size,
|
| 450 |
-
tiktoken_model=self.tiktoken_model_name,
|
| 451 |
-
**self.chunking_func_kwargs,
|
| 452 |
-
)
|
| 453 |
-
}
|
| 454 |
-
|
| 455 |
-
# Update status with chunks information
|
| 456 |
-
doc_status.update(
|
| 457 |
-
{
|
| 458 |
-
"chunks_count": len(chunks),
|
| 459 |
-
"updated_at": datetime.now().isoformat(),
|
| 460 |
-
}
|
| 461 |
-
)
|
| 462 |
-
await self.doc_status.upsert({doc_id: doc_status})
|
| 463 |
-
|
| 464 |
-
try:
|
| 465 |
-
# Store chunks in vector database
|
| 466 |
-
await self.chunks_vdb.upsert(chunks)
|
| 467 |
-
|
| 468 |
-
# Extract and store entities and relationships
|
| 469 |
-
maybe_new_kg = await extract_entities(
|
| 470 |
-
chunks,
|
| 471 |
-
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
| 472 |
-
entity_vdb=self.entities_vdb,
|
| 473 |
-
relationships_vdb=self.relationships_vdb,
|
| 474 |
-
llm_response_cache=self.llm_response_cache,
|
| 475 |
-
global_config=asdict(self),
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
if maybe_new_kg is None:
|
| 479 |
-
raise Exception(
|
| 480 |
-
"Failed to extract entities and relationships"
|
| 481 |
-
)
|
| 482 |
-
|
| 483 |
-
self.chunk_entity_relation_graph = maybe_new_kg
|
| 484 |
-
|
| 485 |
-
# Store original document and chunks
|
| 486 |
-
await self.full_docs.upsert(
|
| 487 |
-
{doc_id: {"content": doc["content"]}}
|
| 488 |
-
)
|
| 489 |
-
await self.text_chunks.upsert(chunks)
|
| 490 |
-
|
| 491 |
-
# Update status to processed
|
| 492 |
-
doc_status.update(
|
| 493 |
-
{
|
| 494 |
-
"status": DocStatus.PROCESSED,
|
| 495 |
-
"updated_at": datetime.now().isoformat(),
|
| 496 |
-
}
|
| 497 |
-
)
|
| 498 |
-
await self.doc_status.upsert({doc_id: doc_status})
|
| 499 |
-
|
| 500 |
-
except Exception as e:
|
| 501 |
-
# Mark as failed if any step fails
|
| 502 |
-
doc_status.update(
|
| 503 |
-
{
|
| 504 |
-
"status": DocStatus.FAILED,
|
| 505 |
-
"error": str(e),
|
| 506 |
-
"updated_at": datetime.now().isoformat(),
|
| 507 |
-
}
|
| 508 |
-
)
|
| 509 |
-
await self.doc_status.upsert({doc_id: doc_status})
|
| 510 |
-
raise e
|
| 511 |
-
|
| 512 |
-
except Exception as e:
|
| 513 |
-
import traceback
|
| 514 |
-
|
| 515 |
-
error_msg = f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
| 516 |
-
logger.error(error_msg)
|
| 517 |
-
continue
|
| 518 |
-
else:
|
| 519 |
-
# Only update index when processing succeeds
|
| 520 |
-
await self._insert_done()
|
| 521 |
|
| 522 |
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
| 523 |
loop = always_get_an_event_loop()
|
|
@@ -597,34 +448,32 @@ class LightRAG:
|
|
| 597 |
# 1. Remove duplicate contents from the list
|
| 598 |
unique_contents = list(set(doc.strip() for doc in string_or_strings))
|
| 599 |
|
| 600 |
-
logger.info(
|
| 601 |
-
f"Received {len(string_or_strings)} docs, contains {len(unique_contents)} new unique documents"
|
| 602 |
-
)
|
| 603 |
-
|
| 604 |
# 2. Generate document IDs and initial status
|
| 605 |
-
new_docs = {
|
| 606 |
compute_mdhash_id(content, prefix="doc-"): {
|
| 607 |
"content": content,
|
| 608 |
"content_summary": self._get_content_summary(content),
|
| 609 |
"content_length": len(content),
|
| 610 |
"status": DocStatus.PENDING,
|
| 611 |
"created_at": datetime.now().isoformat(),
|
| 612 |
-
"updated_at":
|
| 613 |
}
|
| 614 |
for content in unique_contents
|
| 615 |
}
|
| 616 |
|
| 617 |
# 3. Filter out already processed documents
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
|
|
|
|
|
|
| 624 |
|
| 625 |
if not new_docs:
|
| 626 |
logger.info("All documents have been processed or are duplicates")
|
| 627 |
-
return
|
| 628 |
|
| 629 |
# 4. Store original document
|
| 630 |
for doc_id, doc in new_docs.items():
|
|
@@ -633,96 +482,121 @@ class LightRAG:
|
|
| 633 |
)
|
| 634 |
logger.info(f"Stored {len(new_docs)} new unique documents")
|
| 635 |
|
| 636 |
-
async def apipeline_process_chunks(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
"""Get pendding documents, split into chunks,insert chunks"""
|
| 638 |
# 1. get all pending and failed documents
|
| 639 |
-
|
| 640 |
|
| 641 |
-
|
|
|
|
| 642 |
status=DocStatus.FAILED
|
| 643 |
)
|
| 644 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
status=DocStatus.PENDING
|
| 646 |
)
|
|
|
|
|
|
|
| 647 |
|
| 648 |
-
if
|
| 649 |
-
_todo_doc_keys.extend([doc["id"] for doc in _failed_doc])
|
| 650 |
-
if _pendding_doc:
|
| 651 |
-
_todo_doc_keys.extend([doc["id"] for doc in _pendding_doc])
|
| 652 |
-
if not _todo_doc_keys:
|
| 653 |
logger.info("All documents have been processed or are duplicates")
|
| 654 |
-
return
|
| 655 |
-
else:
|
| 656 |
-
logger.info(f"Filtered out {len(_todo_doc_keys)} not processed documents")
|
| 657 |
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
|
|
|
| 661 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
# 2. split docs into chunks, insert chunks, update doc status
|
| 663 |
-
chunk_cnt = 0
|
| 664 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
| 665 |
for i in range(0, len(new_docs), batch_size):
|
| 666 |
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
|
|
|
| 667 |
for doc_id, doc in tqdm_async(
|
| 668 |
-
batch_docs.items(),
|
| 669 |
-
desc=f"Level 1 - Spliting doc in batch {i // batch_size + 1}",
|
| 670 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
try:
|
|
|
|
|
|
|
| 672 |
# Generate chunks from document
|
| 673 |
-
chunks = {
|
| 674 |
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
| 675 |
**dp,
|
| 676 |
"full_doc_id": doc_id,
|
| 677 |
-
"status": DocStatus.PROCESSED,
|
| 678 |
}
|
| 679 |
-
for dp in
|
| 680 |
doc["content"],
|
|
|
|
|
|
|
| 681 |
overlap_token_size=self.chunk_overlap_token_size,
|
| 682 |
max_token_size=self.chunk_token_size,
|
| 683 |
tiktoken_model=self.tiktoken_model_name,
|
|
|
|
| 684 |
)
|
| 685 |
}
|
| 686 |
-
chunk_cnt += len(chunks)
|
| 687 |
-
|
| 688 |
-
try:
|
| 689 |
-
# Store chunks in vector database
|
| 690 |
-
await self.chunks_vdb.upsert(chunks)
|
| 691 |
-
# Update doc status
|
| 692 |
-
await self.text_chunks.upsert(
|
| 693 |
-
{**chunks, "status": DocStatus.PENDING}
|
| 694 |
-
)
|
| 695 |
-
except Exception as e:
|
| 696 |
-
# Mark as failed if any step fails
|
| 697 |
-
await self.text_chunks.upsert(
|
| 698 |
-
{**chunks, "status": DocStatus.FAILED}
|
| 699 |
-
)
|
| 700 |
-
raise e
|
| 701 |
-
except Exception as e:
|
| 702 |
-
import traceback
|
| 703 |
|
| 704 |
-
|
| 705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 706 |
continue
|
| 707 |
-
logger.info(f"Stored {chunk_cnt} chunks from {len(new_docs)} documents")
|
| 708 |
|
| 709 |
async def apipeline_process_extract_graph(self):
|
| 710 |
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
|
| 711 |
# 1. get all pending and failed chunks
|
| 712 |
-
|
| 713 |
-
|
|
|
|
|
|
|
| 714 |
status=DocStatus.FAILED
|
| 715 |
)
|
| 716 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
status=DocStatus.PENDING
|
| 718 |
)
|
| 719 |
-
if
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
return None
|
| 726 |
|
| 727 |
# Process documents in batches
|
| 728 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
|
@@ -731,9 +605,9 @@ class LightRAG:
|
|
| 731 |
batch_size
|
| 732 |
) # Control the number of tasks that are processed simultaneously
|
| 733 |
|
| 734 |
-
async def process_chunk(chunk_id):
|
| 735 |
async with semaphore:
|
| 736 |
-
chunks = {
|
| 737 |
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
| 738 |
}
|
| 739 |
# Extract and store entities and relationships
|
|
@@ -761,13 +635,13 @@ class LightRAG:
|
|
| 761 |
raise e
|
| 762 |
|
| 763 |
with tqdm_async(
|
| 764 |
-
total=len(
|
| 765 |
desc="\nLevel 1 - Processing chunks",
|
| 766 |
unit="chunk",
|
| 767 |
position=0,
|
| 768 |
) as progress:
|
| 769 |
-
tasks = []
|
| 770 |
-
for chunk_id in
|
| 771 |
task = asyncio.create_task(process_chunk(chunk_id))
|
| 772 |
tasks.append(task)
|
| 773 |
|
|
|
|
| 4 |
from dataclasses import asdict, dataclass, field
|
| 5 |
from datetime import datetime
|
| 6 |
from functools import partial
|
| 7 |
+
from typing import Any, Type, Union
|
| 8 |
+
import traceback
|
| 9 |
from .operate import (
|
| 10 |
chunking_by_token_size,
|
| 11 |
+
extract_entities
|
| 12 |
+
# local_query,global_query,hybrid_query,,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
from .utils import (
|
|
|
|
| 25 |
BaseGraphStorage,
|
| 26 |
BaseKVStorage,
|
| 27 |
BaseVectorStorage,
|
|
|
|
|
|
|
| 28 |
DocStatus,
|
| 29 |
)
|
| 30 |
|
|
|
|
| 169 |
enable_llm_cache_for_entity_extract: bool = True
|
| 170 |
|
| 171 |
# extension
|
| 172 |
+
addon_params: dict[str, Any] = field(default_factory=dict)
|
| 173 |
convert_response_to_json_func: callable = convert_response_to_json
|
| 174 |
|
| 175 |
# Add new field for document status storage type
|
|
|
|
| 244 |
),
|
| 245 |
embedding_func=self.embedding_func,
|
| 246 |
)
|
| 247 |
+
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls(
|
| 248 |
namespace=make_namespace(
|
| 249 |
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
|
| 250 |
),
|
|
|
|
| 274 |
embedding_func=self.embedding_func,
|
| 275 |
meta_fields={"src_id", "tgt_id"},
|
| 276 |
)
|
| 277 |
+
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls(
|
| 278 |
namespace=make_namespace(
|
| 279 |
self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS
|
| 280 |
),
|
|
|
|
| 303 |
|
| 304 |
# Initialize document status storage
|
| 305 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
| 306 |
+
self.doc_status: BaseKVStorage = self.doc_status_storage_cls(
|
| 307 |
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
|
| 308 |
global_config=global_config,
|
| 309 |
embedding_func=None,
|
|
|
|
| 352 |
)
|
| 353 |
|
| 354 |
async def ainsert(
|
| 355 |
+
self, string_or_strings: Union[str, list[str]],
|
| 356 |
+
split_by_character: str | None = None,
|
| 357 |
+
split_by_character_only: bool = False
|
| 358 |
):
|
| 359 |
"""Insert documents with checkpoint support
|
| 360 |
|
|
|
|
| 365 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
| 366 |
split_by_character is None, this parameter is ignored.
|
| 367 |
"""
|
| 368 |
+
await self.apipeline_process_documents(string_or_strings)
|
| 369 |
+
await self.apipeline_process_chunks(split_by_character, split_by_character_only)
|
| 370 |
+
await self.apipeline_process_extract_graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
| 374 |
loop = always_get_an_event_loop()
|
|
|
|
| 448 |
# 1. Remove duplicate contents from the list
|
| 449 |
unique_contents = list(set(doc.strip() for doc in string_or_strings))
|
| 450 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
# 2. Generate document IDs and initial status
|
| 452 |
+
new_docs: dict[str, Any] = {
|
| 453 |
compute_mdhash_id(content, prefix="doc-"): {
|
| 454 |
"content": content,
|
| 455 |
"content_summary": self._get_content_summary(content),
|
| 456 |
"content_length": len(content),
|
| 457 |
"status": DocStatus.PENDING,
|
| 458 |
"created_at": datetime.now().isoformat(),
|
| 459 |
+
"updated_at": datetime.now().isoformat(),
|
| 460 |
}
|
| 461 |
for content in unique_contents
|
| 462 |
}
|
| 463 |
|
| 464 |
# 3. Filter out already processed documents
|
| 465 |
+
_add_doc_keys: set[str] = set()
|
| 466 |
+
for doc_id in new_docs.keys():
|
| 467 |
+
current_doc = await self.doc_status.get_by_id(doc_id)
|
| 468 |
+
|
| 469 |
+
if not current_doc or current_doc["status"] == DocStatus.FAILED:
|
| 470 |
+
_add_doc_keys.add(doc_id)
|
| 471 |
+
|
| 472 |
+
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
|
| 473 |
|
| 474 |
if not new_docs:
|
| 475 |
logger.info("All documents have been processed or are duplicates")
|
| 476 |
+
return
|
| 477 |
|
| 478 |
# 4. Store original document
|
| 479 |
for doc_id, doc in new_docs.items():
|
|
|
|
| 482 |
)
|
| 483 |
logger.info(f"Stored {len(new_docs)} new unique documents")
|
| 484 |
|
| 485 |
+
async def apipeline_process_chunks(
|
| 486 |
+
self,
|
| 487 |
+
split_by_character: str | None = None,
|
| 488 |
+
split_by_character_only: bool = False
|
| 489 |
+
) -> None:
|
| 490 |
"""Get pendding documents, split into chunks,insert chunks"""
|
| 491 |
# 1. get all pending and failed documents
|
| 492 |
+
to_process_doc_keys: list[str] = []
|
| 493 |
|
| 494 |
+
# Process failes
|
| 495 |
+
to_process_docs = await self.full_docs.get_by_status(
|
| 496 |
status=DocStatus.FAILED
|
| 497 |
)
|
| 498 |
+
if to_process_docs:
|
| 499 |
+
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
| 500 |
+
|
| 501 |
+
# Process Pending
|
| 502 |
+
to_process_docs = await self.full_docs.get_by_status(
|
| 503 |
status=DocStatus.PENDING
|
| 504 |
)
|
| 505 |
+
if to_process_docs:
|
| 506 |
+
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
| 507 |
|
| 508 |
+
if not to_process_doc_keys:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
logger.info("All documents have been processed or are duplicates")
|
| 510 |
+
return
|
|
|
|
|
|
|
| 511 |
|
| 512 |
+
full_docs_ids = await self.full_docs.get_by_ids(to_process_doc_keys)
|
| 513 |
+
new_docs = {}
|
| 514 |
+
if full_docs_ids:
|
| 515 |
+
new_docs = {doc["id"]: doc for doc in full_docs_ids or []}
|
| 516 |
|
| 517 |
+
if not new_docs:
|
| 518 |
+
logger.info("All documents have been processed or are duplicates")
|
| 519 |
+
return
|
| 520 |
+
|
| 521 |
# 2. split docs into chunks, insert chunks, update doc status
|
|
|
|
| 522 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
| 523 |
for i in range(0, len(new_docs), batch_size):
|
| 524 |
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
| 525 |
+
|
| 526 |
for doc_id, doc in tqdm_async(
|
| 527 |
+
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
|
|
|
| 528 |
):
|
| 529 |
+
doc_status: dict[str, Any] = {
|
| 530 |
+
"content_summary": doc["content_summary"],
|
| 531 |
+
"content_length": doc["content_length"],
|
| 532 |
+
"status": DocStatus.PROCESSING,
|
| 533 |
+
"created_at": doc["created_at"],
|
| 534 |
+
"updated_at": datetime.now().isoformat(),
|
| 535 |
+
}
|
| 536 |
try:
|
| 537 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
| 538 |
+
|
| 539 |
# Generate chunks from document
|
| 540 |
+
chunks: dict[str, Any] = {
|
| 541 |
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
| 542 |
**dp,
|
| 543 |
"full_doc_id": doc_id,
|
|
|
|
| 544 |
}
|
| 545 |
+
for dp in self.chunking_func(
|
| 546 |
doc["content"],
|
| 547 |
+
split_by_character=split_by_character,
|
| 548 |
+
split_by_character_only=split_by_character_only,
|
| 549 |
overlap_token_size=self.chunk_overlap_token_size,
|
| 550 |
max_token_size=self.chunk_token_size,
|
| 551 |
tiktoken_model=self.tiktoken_model_name,
|
| 552 |
+
**self.chunking_func_kwargs,
|
| 553 |
)
|
| 554 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
|
| 556 |
+
# Update status with chunks information
|
| 557 |
+
doc_status.update(
|
| 558 |
+
{
|
| 559 |
+
"chunks_count": len(chunks),
|
| 560 |
+
"updated_at": datetime.now().isoformat(),
|
| 561 |
+
}
|
| 562 |
+
)
|
| 563 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
| 564 |
+
await self.chunks_vdb.upsert(chunks)
|
| 565 |
+
|
| 566 |
+
except Exception as e:
|
| 567 |
+
doc_status.update(
|
| 568 |
+
{
|
| 569 |
+
"status": DocStatus.FAILED,
|
| 570 |
+
"error": str(e),
|
| 571 |
+
"updated_at": datetime.now().isoformat(),
|
| 572 |
+
}
|
| 573 |
+
)
|
| 574 |
+
await self.doc_status.upsert({doc_id: doc_status})
|
| 575 |
+
logger.error(f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}")
|
| 576 |
continue
|
|
|
|
| 577 |
|
| 578 |
async def apipeline_process_extract_graph(self):
|
| 579 |
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
|
| 580 |
# 1. get all pending and failed chunks
|
| 581 |
+
to_process_doc_keys: list[str] = []
|
| 582 |
+
|
| 583 |
+
# Process failes
|
| 584 |
+
to_process_docs = await self.full_docs.get_by_status(
|
| 585 |
status=DocStatus.FAILED
|
| 586 |
)
|
| 587 |
+
if to_process_docs:
|
| 588 |
+
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
| 589 |
+
|
| 590 |
+
# Process Pending
|
| 591 |
+
to_process_docs = await self.full_docs.get_by_status(
|
| 592 |
status=DocStatus.PENDING
|
| 593 |
)
|
| 594 |
+
if to_process_docs:
|
| 595 |
+
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
| 596 |
+
|
| 597 |
+
if not to_process_doc_keys:
|
| 598 |
+
logger.info("All documents have been processed or are duplicates")
|
| 599 |
+
return
|
|
|
|
| 600 |
|
| 601 |
# Process documents in batches
|
| 602 |
batch_size = self.addon_params.get("insert_batch_size", 10)
|
|
|
|
| 605 |
batch_size
|
| 606 |
) # Control the number of tasks that are processed simultaneously
|
| 607 |
|
| 608 |
+
async def process_chunk(chunk_id: str):
|
| 609 |
async with semaphore:
|
| 610 |
+
chunks:dict[str, Any] = {
|
| 611 |
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
| 612 |
}
|
| 613 |
# Extract and store entities and relationships
|
|
|
|
| 635 |
raise e
|
| 636 |
|
| 637 |
with tqdm_async(
|
| 638 |
+
total=len(to_process_doc_keys),
|
| 639 |
desc="\nLevel 1 - Processing chunks",
|
| 640 |
unit="chunk",
|
| 641 |
position=0,
|
| 642 |
) as progress:
|
| 643 |
+
tasks: list[asyncio.Task[None]] = []
|
| 644 |
+
for chunk_id in to_process_doc_keys:
|
| 645 |
task = asyncio.create_task(process_chunk(chunk_id))
|
| 646 |
tasks.append(task)
|
| 647 |
|