gzdaniel commited on
Commit
1e9398a
·
2 Parent(s): 6a4842e 8be5285

Merge branch 'main' into rerank

Browse files
README-zh.md CHANGED
@@ -242,7 +242,6 @@ if __name__ == "__main__":
242
  | **tokenizer** | `Tokenizer` | 用于将文本转换为 tokens(数字)以及使用遵循 TokenizerInterface 协议的 .encode() 和 .decode() 函数将 tokens 转换回文本的函数。 如果您不指定,它将使用默认的 Tiktoken tokenizer。 | `TiktokenTokenizer` |
243
  | **tiktoken_model_name** | `str` | 如果您使用的是默认的 Tiktoken tokenizer,那么这是要使用的特定 Tiktoken 模型的名称。如果您提供自己的 tokenizer,则忽略此设置。 | `gpt-4o-mini` |
244
  | **entity_extract_max_gleaning** | `int` | 实体提取过程中的循环次数,附加历史消息 | `1` |
245
- | **entity_summary_to_max_tokens** | `int` | 每个实体摘要的最大令牌大小 | `500` |
246
  | **node_embedding_algorithm** | `str` | 节点嵌入算法(当前未使用) | `node2vec` |
247
  | **node2vec_params** | `dict` | 节点嵌入的参数 | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
248
  | **embedding_func** | `EmbeddingFunc` | 从文本生成嵌入向量的函数 | `openai_embed` |
 
242
  | **tokenizer** | `Tokenizer` | 用于将文本转换为 tokens(数字)以及使用遵循 TokenizerInterface 协议的 .encode() 和 .decode() 函数将 tokens 转换回文本的函数。 如果您不指定,它将使用默认的 Tiktoken tokenizer。 | `TiktokenTokenizer` |
243
  | **tiktoken_model_name** | `str` | 如果您使用的是默认的 Tiktoken tokenizer,那么这是要使用的特定 Tiktoken 模型的名称。如果您提供自己的 tokenizer,则忽略此设置。 | `gpt-4o-mini` |
244
  | **entity_extract_max_gleaning** | `int` | 实体提取过程中的循环次数,附加历史消息 | `1` |
 
245
  | **node_embedding_algorithm** | `str` | 节点嵌入算法(当前未使用) | `node2vec` |
246
  | **node2vec_params** | `dict` | 节点嵌入的参数 | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
247
  | **embedding_func** | `EmbeddingFunc` | 从文本生成嵌入向量的函数 | `openai_embed` |
README.md CHANGED
@@ -249,7 +249,6 @@ A full list of LightRAG init parameters:
249
  | **tokenizer** | `Tokenizer` | The function used to convert text into tokens (numbers) and back using .encode() and .decode() functions following `TokenizerInterface` protocol. If you don't specify one, it will use the default Tiktoken tokenizer. | `TiktokenTokenizer` |
250
  | **tiktoken_model_name** | `str` | If you're using the default Tiktoken tokenizer, this is the name of the specific Tiktoken model to use. This setting is ignored if you provide your own tokenizer. | `gpt-4o-mini` |
251
  | **entity_extract_max_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
252
- | **entity_summary_to_max_tokens** | `int` | Maximum token size for each entity summary | `500` |
253
  | **node_embedding_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
254
  | **node2vec_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
255
  | **embedding_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
 
249
  | **tokenizer** | `Tokenizer` | The function used to convert text into tokens (numbers) and back using .encode() and .decode() functions following `TokenizerInterface` protocol. If you don't specify one, it will use the default Tiktoken tokenizer. | `TiktokenTokenizer` |
250
  | **tiktoken_model_name** | `str` | If you're using the default Tiktoken tokenizer, this is the name of the specific Tiktoken model to use. This setting is ignored if you provide your own tokenizer. | `gpt-4o-mini` |
251
  | **entity_extract_max_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
 
252
  | **node_embedding_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
253
  | **node2vec_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
254
  | **embedding_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
env.example CHANGED
@@ -75,8 +75,6 @@ OLLAMA_EMULATING_MODEL_TAG=latest
75
  SUMMARY_LANGUAGE=English
76
  ### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
77
  # FORCE_LLM_SUMMARY_ON_MERGE=6
78
- ### Max tokens for entity/relations description after merge
79
- # MAX_TOKEN_SUMMARY=500
80
  ### Maximum number of entity extraction attempts for ambiguous content
81
  # MAX_GLEANING=1
82
 
 
75
  SUMMARY_LANGUAGE=English
76
  ### Number of duplicated entities/edges to trigger LLM re-summary on merge ( at least 3 is recommented)
77
  # FORCE_LLM_SUMMARY_ON_MERGE=6
 
 
78
  ### Maximum number of entity extraction attempts for ambiguous content
79
  # MAX_GLEANING=1
80
 
lightrag/api/README.md CHANGED
@@ -181,9 +181,9 @@ The command-line `workspace` argument and the `WORKSPACE` environment variable i
181
  - **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
182
  - **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
183
  - **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
184
- - **For the Neo4j graph database, logical data isolation is achieved through labels:** `Neo4JStorage`
185
 
186
- To maintain compatibility with legacy data, the default workspace for PostgreSQL is `default` and for Neo4j is `base` when no workspace is configured. For all external storages, the system provides dedicated workspace environment variables to override the common `WORKSPACE` environment variable configuration. These storage-specific workspace environment variables are: `REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`.
187
 
188
  ### Multiple workers for Gunicorn + Uvicorn
189
 
@@ -396,6 +396,7 @@ MongoKVStorage MongoDB
396
  NetworkXStorage NetworkX (default)
397
  Neo4JStorage Neo4J
398
  PGGraphStorage PostgreSQL with AGE plugin
 
399
  ```
400
 
401
  > Testing has shown that Neo4J delivers superior performance in production environments compared to PostgreSQL with AGE plugin.
 
181
  - **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
182
  - **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
183
  - **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
184
+ - **For graph databases, logical data isolation is achieved through labels:** `Neo4JStorage`, `MemgraphStorage`
185
 
186
+ To maintain compatibility with legacy data, the default workspace for PostgreSQL is `default` and for Neo4j is `base` when no workspace is configured. For all external storages, the system provides dedicated workspace environment variables to override the common `WORKSPACE` environment variable configuration. These storage-specific workspace environment variables are: `REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`, `MEMGRAPH_WORKSPACE`.
187
 
188
  ### Multiple workers for Gunicorn + Uvicorn
189
 
 
396
  NetworkXStorage NetworkX (default)
397
  Neo4JStorage Neo4J
398
  PGGraphStorage PostgreSQL with AGE plugin
399
+ MemgraphStorage. Memgraph
400
  ```
401
 
402
  > Testing has shown that Neo4J delivers superior performance in production environments compared to PostgreSQL with AGE plugin.
lightrag/api/utils_api.py CHANGED
@@ -10,7 +10,6 @@ from ascii_colors import ASCIIColors
10
  from lightrag.api import __api_version__ as api_version
11
  from lightrag import __version__ as core_version
12
  from lightrag.constants import (
13
- DEFAULT_MAX_TOKEN_SUMMARY,
14
  DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
15
  )
16
  from fastapi import HTTPException, Security, Request, status
@@ -280,9 +279,6 @@ def display_splash_screen(args: argparse.Namespace) -> None:
280
  ASCIIColors.white(" ├─ Top-K: ", end="")
281
  ASCIIColors.yellow(f"{args.top_k}")
282
  ASCIIColors.white(" ├─ Max Token Summary: ", end="")
283
- ASCIIColors.yellow(
284
- f"{get_env_value('MAX_TOKEN_SUMMARY', DEFAULT_MAX_TOKEN_SUMMARY, int)}"
285
- )
286
  ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="")
287
  ASCIIColors.yellow(
288
  f"{get_env_value('FORCE_LLM_SUMMARY_ON_MERGE', DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int)}"
 
10
  from lightrag.api import __api_version__ as api_version
11
  from lightrag import __version__ as core_version
12
  from lightrag.constants import (
 
13
  DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
14
  )
15
  from fastapi import HTTPException, Security, Request, status
 
279
  ASCIIColors.white(" ├─ Top-K: ", end="")
280
  ASCIIColors.yellow(f"{args.top_k}")
281
  ASCIIColors.white(" ├─ Max Token Summary: ", end="")
 
 
 
282
  ASCIIColors.white(" └─ Force LLM Summary on Merge: ", end="")
283
  ASCIIColors.yellow(
284
  f"{get_env_value('FORCE_LLM_SUMMARY_ON_MERGE', DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int)}"
lightrag/constants.py CHANGED
@@ -8,8 +8,7 @@ consistency and makes maintenance easier.
8
 
9
  # Default values for environment variables
10
  DEFAULT_MAX_GLEANING = 1
11
- DEFAULT_MAX_TOKEN_SUMMARY = 500
12
- DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 6
13
  DEFAULT_WOKERS = 2
14
  DEFAULT_TIMEOUT = 150
15
 
 
8
 
9
  # Default values for environment variables
10
  DEFAULT_MAX_GLEANING = 1
11
+ DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE = 4
 
12
  DEFAULT_WOKERS = 2
13
  DEFAULT_TIMEOUT = 150
14
 
lightrag/kg/memgraph_impl.py CHANGED
@@ -435,7 +435,7 @@ class MemgraphStorage(BaseGraphStorage):
435
 
436
  async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
437
  """
438
- Upsert a node in the Neo4j database.
439
 
440
  Args:
441
  node_id: The unique identifier for the node (used as label)
@@ -448,7 +448,9 @@ class MemgraphStorage(BaseGraphStorage):
448
  properties = node_data
449
  entity_type = properties["entity_type"]
450
  if "entity_id" not in properties:
451
- raise ValueError("Neo4j: node properties must contain an 'entity_id' field")
 
 
452
 
453
  try:
454
  async with self._driver.session(database=self._DATABASE) as session:
@@ -732,7 +734,7 @@ class MemgraphStorage(BaseGraphStorage):
732
  self,
733
  node_label: str,
734
  max_depth: int = 3,
735
- max_nodes: int = MAX_GRAPH_NODES,
736
  ) -> KnowledgeGraph:
737
  """
738
  Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
@@ -740,120 +742,118 @@ class MemgraphStorage(BaseGraphStorage):
740
  Args:
741
  node_label: Label of the starting node, * means all nodes
742
  max_depth: Maximum depth of the subgraph, Defaults to 3
743
- max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
744
 
745
  Returns:
746
  KnowledgeGraph object containing nodes and edges, with an is_truncated flag
747
  indicating whether the graph was truncated due to max_nodes limit
748
-
749
- Raises:
750
- Exception: If there is an error executing the query
751
  """
752
- if self._driver is None:
753
- raise RuntimeError(
754
- "Memgraph driver is not initialized. Call 'await initialize()' first."
755
- )
 
 
756
 
 
757
  result = KnowledgeGraph()
758
  seen_nodes = set()
759
  seen_edges = set()
760
- workspace_label = self._get_workspace_label()
761
  async with self._driver.session(
762
  database=self._DATABASE, default_access_mode="READ"
763
  ) as session:
764
  try:
765
  if node_label == "*":
766
- # First check if database has any nodes
767
- count_query = "MATCH (n) RETURN count(n) as total"
 
 
768
  count_result = None
769
- total_count = 0
770
  try:
771
  count_result = await session.run(count_query)
772
  count_record = await count_result.single()
773
- if count_record:
774
- total_count = count_record["total"]
775
- if total_count == 0:
776
- logger.debug("No nodes found in database")
777
- return result
778
- if total_count > max_nodes:
779
- result.is_truncated = True
780
- logger.info(
781
- f"Graph truncated: {total_count} nodes found, limited to {max_nodes}"
782
- )
783
  finally:
784
  if count_result:
785
  await count_result.consume()
786
 
787
- # Run the main query to get nodes with highest degree
788
  main_query = f"""
789
  MATCH (n:`{workspace_label}`)
790
  OPTIONAL MATCH (n)-[r]-()
791
  WITH n, COALESCE(count(r), 0) AS degree
792
  ORDER BY degree DESC
793
  LIMIT $max_nodes
794
- WITH collect(n) AS kept_nodes
795
- MATCH (a)-[r]-(b)
 
 
796
  WHERE a IN kept_nodes AND b IN kept_nodes
797
- RETURN [node IN kept_nodes | {{node: node}}] AS node_info,
798
  collect(DISTINCT r) AS relationships
799
  """
800
  result_set = None
801
  try:
802
  result_set = await session.run(
803
- main_query, {"max_nodes": max_nodes}
 
804
  )
805
  record = await result_set.single()
806
- if not record:
807
- logger.debug("No record returned from main query")
808
- return result
809
  finally:
810
  if result_set:
811
  await result_set.consume()
812
 
813
  else:
814
- bfs_query = f"""
 
815
  MATCH (start:`{workspace_label}`)
816
  WHERE start.entity_id = $entity_id
817
- WITH start
818
- CALL {{
819
- WITH start
820
- MATCH path = (start)-[*0..{max_depth}]-(node)
821
- WITH nodes(path) AS path_nodes, relationships(path) AS path_rels
822
- UNWIND path_nodes AS n
823
- WITH collect(DISTINCT n) AS all_nodes, collect(DISTINCT path_rels) AS all_rel_lists
824
- WITH all_nodes, reduce(r = [], x IN all_rel_lists | r + x) AS all_rels
825
- RETURN all_nodes, all_rels
826
- }}
827
- WITH all_nodes AS nodes, all_rels AS relationships, size(all_nodes) AS total_nodes
828
  WITH
829
  CASE
830
- WHEN total_nodes <= {max_nodes} THEN nodes
831
- ELSE nodes[0..{max_nodes}]
832
  END AS limited_nodes,
833
- relationships,
834
- total_nodes,
835
- total_nodes > {max_nodes} AS is_truncated
 
 
 
 
836
  RETURN
837
  [node IN limited_nodes | {{node: node}}] AS node_info,
838
  relationships,
839
- total_nodes,
840
  is_truncated
841
  """
 
842
  result_set = None
843
  try:
844
  result_set = await session.run(
845
- bfs_query,
846
  {
847
  "entity_id": node_label,
 
848
  },
849
  )
850
  record = await result_set.single()
 
 
851
  if not record:
852
  logger.debug(f"No nodes found for entity_id: {node_label}")
853
  return result
854
 
855
- # Check if the query indicates truncation
856
- if "is_truncated" in record and record["is_truncated"]:
857
  result.is_truncated = True
858
  logger.info(
859
  f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
@@ -863,13 +863,11 @@ class MemgraphStorage(BaseGraphStorage):
863
  if result_set:
864
  await result_set.consume()
865
 
866
- # Process the record if it exists
867
- if record and record["node_info"]:
868
  for node_info in record["node_info"]:
869
  node = node_info["node"]
870
  node_id = node.id
871
  if node_id not in seen_nodes:
872
- seen_nodes.add(node_id)
873
  result.nodes.append(
874
  KnowledgeGraphNode(
875
  id=f"{node_id}",
@@ -877,11 +875,11 @@ class MemgraphStorage(BaseGraphStorage):
877
  properties=dict(node),
878
  )
879
  )
 
880
 
881
  for rel in record["relationships"]:
882
  edge_id = rel.id
883
  if edge_id not in seen_edges:
884
- seen_edges.add(edge_id)
885
  start = rel.start_node
886
  end = rel.end_node
887
  result.edges.append(
@@ -893,14 +891,13 @@ class MemgraphStorage(BaseGraphStorage):
893
  properties=dict(rel),
894
  )
895
  )
 
896
 
897
- logger.info(
898
- f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
899
- )
900
 
901
  except Exception as e:
902
- logger.error(f"Error getting knowledge graph: {str(e)}")
903
- # Return empty but properly initialized KnowledgeGraph on error
904
- return KnowledgeGraph()
905
 
906
  return result
 
435
 
436
  async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
437
  """
438
+ Upsert a node in the Memgraph database.
439
 
440
  Args:
441
  node_id: The unique identifier for the node (used as label)
 
448
  properties = node_data
449
  entity_type = properties["entity_type"]
450
  if "entity_id" not in properties:
451
+ raise ValueError(
452
+ "Memgraph: node properties must contain an 'entity_id' field"
453
+ )
454
 
455
  try:
456
  async with self._driver.session(database=self._DATABASE) as session:
 
734
  self,
735
  node_label: str,
736
  max_depth: int = 3,
737
+ max_nodes: int = None,
738
  ) -> KnowledgeGraph:
739
  """
740
  Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
 
742
  Args:
743
  node_label: Label of the starting node, * means all nodes
744
  max_depth: Maximum depth of the subgraph, Defaults to 3
745
+ max_nodes: Maximum nodes to return by BFS, Defaults to 1000
746
 
747
  Returns:
748
  KnowledgeGraph object containing nodes and edges, with an is_truncated flag
749
  indicating whether the graph was truncated due to max_nodes limit
 
 
 
750
  """
751
+ # Get max_nodes from global_config if not provided
752
+ if max_nodes is None:
753
+ max_nodes = self.global_config.get("max_graph_nodes", 1000)
754
+ else:
755
+ # Limit max_nodes to not exceed global_config max_graph_nodes
756
+ max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
757
 
758
+ workspace_label = self._get_workspace_label()
759
  result = KnowledgeGraph()
760
  seen_nodes = set()
761
  seen_edges = set()
762
+
763
  async with self._driver.session(
764
  database=self._DATABASE, default_access_mode="READ"
765
  ) as session:
766
  try:
767
  if node_label == "*":
768
+ # First check total node count to determine if graph is truncated
769
+ count_query = (
770
+ f"MATCH (n:`{workspace_label}`) RETURN count(n) as total"
771
+ )
772
  count_result = None
 
773
  try:
774
  count_result = await session.run(count_query)
775
  count_record = await count_result.single()
776
+
777
+ if count_record and count_record["total"] > max_nodes:
778
+ result.is_truncated = True
779
+ logger.info(
780
+ f"Graph truncated: {count_record['total']} nodes found, limited to {max_nodes}"
781
+ )
 
 
 
 
782
  finally:
783
  if count_result:
784
  await count_result.consume()
785
 
786
+ # Run main query to get nodes with highest degree
787
  main_query = f"""
788
  MATCH (n:`{workspace_label}`)
789
  OPTIONAL MATCH (n)-[r]-()
790
  WITH n, COALESCE(count(r), 0) AS degree
791
  ORDER BY degree DESC
792
  LIMIT $max_nodes
793
+ WITH collect({{node: n}}) AS filtered_nodes
794
+ UNWIND filtered_nodes AS node_info
795
+ WITH collect(node_info.node) AS kept_nodes, filtered_nodes
796
+ OPTIONAL MATCH (a)-[r]-(b)
797
  WHERE a IN kept_nodes AND b IN kept_nodes
798
+ RETURN filtered_nodes AS node_info,
799
  collect(DISTINCT r) AS relationships
800
  """
801
  result_set = None
802
  try:
803
  result_set = await session.run(
804
+ main_query,
805
+ {"max_nodes": max_nodes},
806
  )
807
  record = await result_set.single()
 
 
 
808
  finally:
809
  if result_set:
810
  await result_set.consume()
811
 
812
  else:
813
+ # Run subgraph query for specific node_label
814
+ subgraph_query = f"""
815
  MATCH (start:`{workspace_label}`)
816
  WHERE start.entity_id = $entity_id
817
+
818
+ MATCH path = (start)-[*BFS 0..{max_depth}]-(end:`{workspace_label}`)
819
+ WHERE ALL(n IN nodes(path) WHERE '{workspace_label}' IN labels(n))
820
+ WITH collect(DISTINCT end) + start AS all_nodes_unlimited
 
 
 
 
 
 
 
821
  WITH
822
  CASE
823
+ WHEN size(all_nodes_unlimited) <= $max_nodes THEN all_nodes_unlimited
824
+ ELSE all_nodes_unlimited[0..$max_nodes]
825
  END AS limited_nodes,
826
+ size(all_nodes_unlimited) > $max_nodes AS is_truncated
827
+
828
+ UNWIND limited_nodes AS n
829
+ MATCH (n)-[r]-(m)
830
+ WHERE m IN limited_nodes
831
+ WITH collect(DISTINCT n) AS limited_nodes, collect(DISTINCT r) AS relationships, is_truncated
832
+
833
  RETURN
834
  [node IN limited_nodes | {{node: node}}] AS node_info,
835
  relationships,
 
836
  is_truncated
837
  """
838
+
839
  result_set = None
840
  try:
841
  result_set = await session.run(
842
+ subgraph_query,
843
  {
844
  "entity_id": node_label,
845
+ "max_nodes": max_nodes,
846
  },
847
  )
848
  record = await result_set.single()
849
+
850
+ # If no record found, return empty KnowledgeGraph
851
  if not record:
852
  logger.debug(f"No nodes found for entity_id: {node_label}")
853
  return result
854
 
855
+ # Check if the result was truncated
856
+ if record.get("is_truncated"):
857
  result.is_truncated = True
858
  logger.info(
859
  f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
 
863
  if result_set:
864
  await result_set.consume()
865
 
866
+ if record:
 
867
  for node_info in record["node_info"]:
868
  node = node_info["node"]
869
  node_id = node.id
870
  if node_id not in seen_nodes:
 
871
  result.nodes.append(
872
  KnowledgeGraphNode(
873
  id=f"{node_id}",
 
875
  properties=dict(node),
876
  )
877
  )
878
+ seen_nodes.add(node_id)
879
 
880
  for rel in record["relationships"]:
881
  edge_id = rel.id
882
  if edge_id not in seen_edges:
 
883
  start = rel.start_node
884
  end = rel.end_node
885
  result.edges.append(
 
891
  properties=dict(rel),
892
  )
893
  )
894
+ seen_edges.add(edge_id)
895
 
896
+ logger.info(
897
+ f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
898
+ )
899
 
900
  except Exception as e:
901
+ logger.warning(f"Memgraph error during subgraph query: {str(e)}")
 
 
902
 
903
  return result
lightrag/lightrag.py CHANGED
@@ -23,7 +23,6 @@ from typing import (
23
  )
24
  from lightrag.constants import (
25
  DEFAULT_MAX_GLEANING,
26
- DEFAULT_MAX_TOKEN_SUMMARY,
27
  DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
28
  )
29
  from lightrag.utils import get_env_value
@@ -134,10 +133,6 @@ class LightRAG:
134
  )
135
  """Maximum number of entity extraction attempts for ambiguous content."""
136
 
137
- summary_to_max_tokens: int = field(
138
- default=get_env_value("MAX_TOKEN_SUMMARY", DEFAULT_MAX_TOKEN_SUMMARY, int)
139
- )
140
-
141
  force_llm_summary_on_merge: int = field(
142
  default=get_env_value(
143
  "FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
 
23
  )
24
  from lightrag.constants import (
25
  DEFAULT_MAX_GLEANING,
 
26
  DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
27
  )
28
  from lightrag.utils import get_env_value
 
133
  )
134
  """Maximum number of entity extraction attempts for ambiguous content."""
135
 
 
 
 
 
136
  force_llm_summary_on_merge: int = field(
137
  default=get_env_value(
138
  "FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
lightrag/operate.py CHANGED
@@ -123,7 +123,6 @@ async def _handle_entity_relation_summary(
123
 
124
  tokenizer: Tokenizer = global_config["tokenizer"]
125
  llm_max_tokens = global_config["llm_model_max_token_size"]
126
- # summary_max_tokens = global_config["summary_to_max_tokens"]
127
 
128
  language = global_config["addon_params"].get(
129
  "language", PROMPTS["DEFAULT_LANGUAGE"]
 
123
 
124
  tokenizer: Tokenizer = global_config["tokenizer"]
125
  llm_max_tokens = global_config["llm_model_max_token_size"]
 
126
 
127
  language = global_config["addon_params"].get(
128
  "language", PROMPTS["DEFAULT_LANGUAGE"]