Update doc for rerank
Browse files- docs/rerank_integration.md +12 -12
docs/rerank_integration.md
CHANGED
|
@@ -22,14 +22,14 @@ from lightrag import LightRAG, QueryParam
|
|
| 22 |
from lightrag.rerank import custom_rerank, RerankModel
|
| 23 |
|
| 24 |
# Method 1: Using a custom rerank function with all settings included
|
| 25 |
-
async def my_rerank_func(query: str, documents: list,
|
| 26 |
return await custom_rerank(
|
| 27 |
query=query,
|
| 28 |
documents=documents,
|
| 29 |
model="BAAI/bge-reranker-v2-m3",
|
| 30 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 31 |
api_key="your_api_key_here",
|
| 32 |
-
|
| 33 |
**kwargs
|
| 34 |
)
|
| 35 |
|
|
@@ -95,7 +95,7 @@ result = await custom_rerank(
|
|
| 95 |
model="BAAI/bge-reranker-v2-m3",
|
| 96 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 97 |
api_key="your_api_key_here",
|
| 98 |
-
|
| 99 |
)
|
| 100 |
```
|
| 101 |
|
|
@@ -109,7 +109,7 @@ result = await jina_rerank(
|
|
| 109 |
documents=documents,
|
| 110 |
model="BAAI/bge-reranker-v2-m3",
|
| 111 |
api_key="your_jina_api_key",
|
| 112 |
-
|
| 113 |
)
|
| 114 |
```
|
| 115 |
|
|
@@ -123,7 +123,7 @@ result = await cohere_rerank(
|
|
| 123 |
documents=documents,
|
| 124 |
model="rerank-english-v2.0",
|
| 125 |
api_key="your_cohere_api_key",
|
| 126 |
-
|
| 127 |
)
|
| 128 |
```
|
| 129 |
|
|
@@ -141,7 +141,7 @@ Reranking is automatically applied at these key retrieval stages:
|
|
| 141 |
| Parameter | Type | Default | Description |
|
| 142 |
|-----------|------|---------|-------------|
|
| 143 |
| `enable_rerank` | bool | False | Enable/disable reranking |
|
| 144 |
-
| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys,
|
| 145 |
|
| 146 |
## Example Usage
|
| 147 |
|
|
@@ -154,14 +154,14 @@ from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
|
|
| 154 |
from lightrag.kg.shared_storage import initialize_pipeline_status
|
| 155 |
from lightrag.rerank import jina_rerank
|
| 156 |
|
| 157 |
-
async def my_rerank_func(query: str, documents: list,
|
| 158 |
"""Custom rerank function with all settings included"""
|
| 159 |
return await jina_rerank(
|
| 160 |
query=query,
|
| 161 |
documents=documents,
|
| 162 |
model="BAAI/bge-reranker-v2-m3",
|
| 163 |
api_key="your_jina_api_key_here",
|
| 164 |
-
|
| 165 |
**kwargs
|
| 166 |
)
|
| 167 |
|
|
@@ -186,7 +186,7 @@ async def main():
|
|
| 186 |
# Query with rerank (automatically applied)
|
| 187 |
result = await rag.aquery(
|
| 188 |
"Your question here",
|
| 189 |
-
param=QueryParam(enable_rerank=True) # This
|
| 190 |
)
|
| 191 |
|
| 192 |
print(result)
|
|
@@ -212,7 +212,7 @@ async def test_rerank():
|
|
| 212 |
model="BAAI/bge-reranker-v2-m3",
|
| 213 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 214 |
api_key="your_api_key_here",
|
| 215 |
-
|
| 216 |
)
|
| 217 |
|
| 218 |
for doc in reranked:
|
|
@@ -221,11 +221,11 @@ async def test_rerank():
|
|
| 221 |
|
| 222 |
## Best Practices
|
| 223 |
|
| 224 |
-
1. **Self-Contained Functions**: Include all necessary configurations (API keys, models,
|
| 225 |
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
|
| 226 |
3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function
|
| 227 |
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
|
| 228 |
-
5. **Top-
|
| 229 |
6. **Cost Management**: Consider rerank API costs in your budget planning
|
| 230 |
|
| 231 |
## Troubleshooting
|
|
|
|
| 22 |
from lightrag.rerank import custom_rerank, RerankModel
|
| 23 |
|
| 24 |
# Method 1: Using a custom rerank function with all settings included
|
| 25 |
+
async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
|
| 26 |
return await custom_rerank(
|
| 27 |
query=query,
|
| 28 |
documents=documents,
|
| 29 |
model="BAAI/bge-reranker-v2-m3",
|
| 30 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 31 |
api_key="your_api_key_here",
|
| 32 |
+
top_n=top_n or 10, # Handle top_n within the function
|
| 33 |
**kwargs
|
| 34 |
)
|
| 35 |
|
|
|
|
| 95 |
model="BAAI/bge-reranker-v2-m3",
|
| 96 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 97 |
api_key="your_api_key_here",
|
| 98 |
+
top_n=10
|
| 99 |
)
|
| 100 |
```
|
| 101 |
|
|
|
|
| 109 |
documents=documents,
|
| 110 |
model="BAAI/bge-reranker-v2-m3",
|
| 111 |
api_key="your_jina_api_key",
|
| 112 |
+
top_n=10
|
| 113 |
)
|
| 114 |
```
|
| 115 |
|
|
|
|
| 123 |
documents=documents,
|
| 124 |
model="rerank-english-v2.0",
|
| 125 |
api_key="your_cohere_api_key",
|
| 126 |
+
top_n=10
|
| 127 |
)
|
| 128 |
```
|
| 129 |
|
|
|
|
| 141 |
| Parameter | Type | Default | Description |
|
| 142 |
|-----------|------|---------|-------------|
|
| 143 |
| `enable_rerank` | bool | False | Enable/disable reranking |
|
| 144 |
+
| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_n, etc.) |
|
| 145 |
|
| 146 |
## Example Usage
|
| 147 |
|
|
|
|
| 154 |
from lightrag.kg.shared_storage import initialize_pipeline_status
|
| 155 |
from lightrag.rerank import jina_rerank
|
| 156 |
|
| 157 |
+
async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
|
| 158 |
"""Custom rerank function with all settings included"""
|
| 159 |
return await jina_rerank(
|
| 160 |
query=query,
|
| 161 |
documents=documents,
|
| 162 |
model="BAAI/bge-reranker-v2-m3",
|
| 163 |
api_key="your_jina_api_key_here",
|
| 164 |
+
top_n=top_n or 10, # Default top_n if not provided
|
| 165 |
**kwargs
|
| 166 |
)
|
| 167 |
|
|
|
|
| 186 |
# Query with rerank (automatically applied)
|
| 187 |
result = await rag.aquery(
|
| 188 |
"Your question here",
|
| 189 |
+
param=QueryParam(enable_rerank=True) # This top_n is passed to rerank function
|
| 190 |
)
|
| 191 |
|
| 192 |
print(result)
|
|
|
|
| 212 |
model="BAAI/bge-reranker-v2-m3",
|
| 213 |
base_url="https://api.your-provider.com/v1/rerank",
|
| 214 |
api_key="your_api_key_here",
|
| 215 |
+
top_n=2
|
| 216 |
)
|
| 217 |
|
| 218 |
for doc in reranked:
|
|
|
|
| 221 |
|
| 222 |
## Best Practices
|
| 223 |
|
| 224 |
+
1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_n handling) within your rerank function
|
| 225 |
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
|
| 226 |
3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function
|
| 227 |
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
|
| 228 |
+
5. **Top-n Handling**: Handle top_n parameter appropriately within your rerank function
|
| 229 |
6. **Cost Management**: Consider rerank API costs in your budget planning
|
| 230 |
|
| 231 |
## Troubleshooting
|