|
import asyncio |
|
import logging |
|
import os |
|
import time |
|
from dotenv import load_dotenv |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.zhipu import zhipu_complete |
|
from lightrag.llm.ollama import ollama_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
load_dotenv() |
|
ROOT_DIR = os.environ.get("ROOT_DIR") |
|
WORKING_DIR = f"{ROOT_DIR}/dickens-pg" |
|
|
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
os.environ["AGE_GRAPH_NAME"] = "dickens" |
|
|
|
os.environ["POSTGRES_HOST"] = "localhost" |
|
os.environ["POSTGRES_PORT"] = "15432" |
|
os.environ["POSTGRES_USER"] = "rag" |
|
os.environ["POSTGRES_PASSWORD"] = "rag" |
|
os.environ["POSTGRES_DATABASE"] = "rag" |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=zhipu_complete, |
|
llm_model_name="glm-4-flashx", |
|
llm_model_max_async=4, |
|
llm_model_max_token_size=32768, |
|
enable_llm_cache_for_entity_extract=True, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=1024, |
|
max_token_size=8192, |
|
func=lambda texts: ollama_embedding( |
|
texts, embed_model="bge-m3", host="http://localhost:11434" |
|
), |
|
), |
|
kv_storage="PGKVStorage", |
|
doc_status_storage="PGDocStatusStorage", |
|
graph_storage="PGGraphStorage", |
|
vector_storage="PGVectorStorage", |
|
auto_manage_storages_states=False, |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
async def main(): |
|
|
|
rag = await initialize_rag() |
|
|
|
|
|
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func |
|
|
|
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f: |
|
await rag.ainsert(f.read()) |
|
|
|
print("==== Trying to test the rag queries ====") |
|
print("**** Start Naive Query ****") |
|
start_time = time.time() |
|
|
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
print(f"Naive Query Time: {time.time() - start_time} seconds") |
|
|
|
print("**** Start Local Query ****") |
|
start_time = time.time() |
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
print(f"Local Query Time: {time.time() - start_time} seconds") |
|
|
|
print("**** Start Global Query ****") |
|
start_time = time.time() |
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
print(f"Global Query Time: {time.time() - start_time}") |
|
|
|
print("**** Start Hybrid Query ****") |
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
print(f"Hybrid Query Time: {time.time() - start_time} seconds") |
|
|
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |
|
|