|  | import asyncio | 
					
						
						|  | import inspect | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from lightrag import LightRAG, QueryParam | 
					
						
						|  | from lightrag.llm.ollama import ollama_embed, ollama_model_complete | 
					
						
						|  | from lightrag.utils import EmbeddingFunc | 
					
						
						|  |  | 
					
						
						|  | WORKING_DIR = "./dickens_gremlin" | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(WORKING_DIR): | 
					
						
						|  | os.mkdir(WORKING_DIR) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["GREMLIN_HOST"] = "localhost" | 
					
						
						|  | os.environ["GREMLIN_PORT"] = "8182" | 
					
						
						|  | os.environ["GREMLIN_GRAPH"] = "dickens" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["GREMLIN_USER"] = "" | 
					
						
						|  | os.environ["GREMLIN_PASSWORD"] = "" | 
					
						
						|  |  | 
					
						
						|  | rag = LightRAG( | 
					
						
						|  | working_dir=WORKING_DIR, | 
					
						
						|  | llm_model_func=ollama_model_complete, | 
					
						
						|  | llm_model_name="llama3.1:8b", | 
					
						
						|  | llm_model_max_async=4, | 
					
						
						|  | llm_model_max_token_size=32768, | 
					
						
						|  | llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}}, | 
					
						
						|  | embedding_func=EmbeddingFunc( | 
					
						
						|  | embedding_dim=768, | 
					
						
						|  | max_token_size=8192, | 
					
						
						|  | func=lambda texts: ollama_embed( | 
					
						
						|  | texts, embed_model="nomic-embed-text", host="http://localhost:11434" | 
					
						
						|  | ), | 
					
						
						|  | ), | 
					
						
						|  | graph_storage="GremlinStorage", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with open("./book.txt", "r", encoding="utf-8") as f: | 
					
						
						|  | rag.insert(f.read()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resp = rag.query( | 
					
						
						|  | "What are the top themes in this story?", | 
					
						
						|  | param=QueryParam(mode="hybrid", stream=True), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | async def print_stream(stream): | 
					
						
						|  | async for chunk in stream: | 
					
						
						|  | print(chunk, end="", flush=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inspect.isasyncgen(resp): | 
					
						
						|  | asyncio.run(print_stream(resp)) | 
					
						
						|  | else: | 
					
						
						|  | print(resp) | 
					
						
						|  |  |