|  | import os | 
					
						
						|  |  | 
					
						
						|  | from lightrag import LightRAG, QueryParam | 
					
						
						|  | from lightrag.llm.hf import hf_model_complete, hf_embed | 
					
						
						|  | from lightrag.utils import EmbeddingFunc | 
					
						
						|  | from transformers import AutoModel, AutoTokenizer | 
					
						
						|  | from lightrag.kg.shared_storage import initialize_pipeline_status | 
					
						
						|  |  | 
					
						
						|  | import asyncio | 
					
						
						|  | import nest_asyncio | 
					
						
						|  |  | 
					
						
						|  | nest_asyncio.apply() | 
					
						
						|  |  | 
					
						
						|  | WORKING_DIR = "./dickens" | 
					
						
						|  |  | 
					
						
						|  | if not os.path.exists(WORKING_DIR): | 
					
						
						|  | os.mkdir(WORKING_DIR) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | async def initialize_rag(): | 
					
						
						|  | rag = LightRAG( | 
					
						
						|  | working_dir=WORKING_DIR, | 
					
						
						|  | llm_model_func=hf_model_complete, | 
					
						
						|  | llm_model_name="meta-llama/Llama-3.1-8B-Instruct", | 
					
						
						|  | embedding_func=EmbeddingFunc( | 
					
						
						|  | embedding_dim=384, | 
					
						
						|  | max_token_size=5000, | 
					
						
						|  | func=lambda texts: hf_embed( | 
					
						
						|  | texts, | 
					
						
						|  | tokenizer=AutoTokenizer.from_pretrained( | 
					
						
						|  | "sentence-transformers/all-MiniLM-L6-v2" | 
					
						
						|  | ), | 
					
						
						|  | embed_model=AutoModel.from_pretrained( | 
					
						
						|  | "sentence-transformers/all-MiniLM-L6-v2" | 
					
						
						|  | ), | 
					
						
						|  | ), | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | await rag.initialize_storages() | 
					
						
						|  | await initialize_pipeline_status() | 
					
						
						|  |  | 
					
						
						|  | return rag | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | rag = asyncio.run(initialize_rag()) | 
					
						
						|  |  | 
					
						
						|  | with open("./book.txt", "r", encoding="utf-8") as f: | 
					
						
						|  | rag.insert(f.read()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query( | 
					
						
						|  | "What are the top themes in this story?", param=QueryParam(mode="naive") | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query( | 
					
						
						|  | "What are the top themes in this story?", param=QueryParam(mode="local") | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query( | 
					
						
						|  | "What are the top themes in this story?", param=QueryParam(mode="global") | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print( | 
					
						
						|  | rag.query( | 
					
						
						|  | "What are the top themes in this story?", param=QueryParam(mode="hybrid") | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |