|
|
import asyncio |
|
|
import os |
|
|
from typing import Any, final |
|
|
from dataclasses import dataclass |
|
|
import numpy as np |
|
|
from lightrag.utils import logger, compute_mdhash_id |
|
|
from ..base import BaseVectorStorage |
|
|
import pipmaster as pm |
|
|
|
|
|
|
|
|
if not pm.is_installed("configparser"): |
|
|
pm.install("configparser") |
|
|
|
|
|
if not pm.is_installed("pymilvus"): |
|
|
pm.install("pymilvus") |
|
|
|
|
|
import configparser |
|
|
from pymilvus import MilvusClient |
|
|
|
|
|
config = configparser.ConfigParser() |
|
|
config.read("config.ini", "utf-8") |
|
|
|
|
|
|
|
|
@final |
|
|
@dataclass |
|
|
class MilvusVectorDBStorage(BaseVectorStorage): |
|
|
@staticmethod |
|
|
def create_collection_if_not_exist( |
|
|
client: MilvusClient, collection_name: str, **kwargs |
|
|
): |
|
|
if client.has_collection(collection_name): |
|
|
return |
|
|
client.create_collection( |
|
|
collection_name, max_length=64, id_type="string", **kwargs |
|
|
) |
|
|
|
|
|
def __post_init__(self): |
|
|
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {}) |
|
|
cosine_threshold = kwargs.get("cosine_better_than_threshold") |
|
|
if cosine_threshold is None: |
|
|
raise ValueError( |
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs" |
|
|
) |
|
|
self.cosine_better_than_threshold = cosine_threshold |
|
|
|
|
|
self._client = MilvusClient( |
|
|
uri=os.environ.get( |
|
|
"MILVUS_URI", |
|
|
config.get( |
|
|
"milvus", |
|
|
"uri", |
|
|
fallback=os.path.join( |
|
|
self.global_config["working_dir"], "milvus_lite.db" |
|
|
), |
|
|
), |
|
|
), |
|
|
user=os.environ.get( |
|
|
"MILVUS_USER", config.get("milvus", "user", fallback=None) |
|
|
), |
|
|
password=os.environ.get( |
|
|
"MILVUS_PASSWORD", config.get("milvus", "password", fallback=None) |
|
|
), |
|
|
token=os.environ.get( |
|
|
"MILVUS_TOKEN", config.get("milvus", "token", fallback=None) |
|
|
), |
|
|
db_name=os.environ.get( |
|
|
"MILVUS_DB_NAME", config.get("milvus", "db_name", fallback=None) |
|
|
), |
|
|
) |
|
|
self._max_batch_size = self.global_config["embedding_batch_num"] |
|
|
MilvusVectorDBStorage.create_collection_if_not_exist( |
|
|
self._client, |
|
|
self.namespace, |
|
|
dimension=self.embedding_func.embedding_dim, |
|
|
) |
|
|
|
|
|
async def upsert(self, data: dict[str, dict[str, Any]]) -> None: |
|
|
logger.info(f"Inserting {len(data)} to {self.namespace}") |
|
|
if not data: |
|
|
return |
|
|
|
|
|
import time |
|
|
|
|
|
current_time = int(time.time()) |
|
|
|
|
|
list_data: list[dict[str, Any]] = [ |
|
|
{ |
|
|
"id": k, |
|
|
"created_at": current_time, |
|
|
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields}, |
|
|
} |
|
|
for k, v in data.items() |
|
|
] |
|
|
contents = [v["content"] for v in data.values()] |
|
|
batches = [ |
|
|
contents[i : i + self._max_batch_size] |
|
|
for i in range(0, len(contents), self._max_batch_size) |
|
|
] |
|
|
|
|
|
embedding_tasks = [self.embedding_func(batch) for batch in batches] |
|
|
embeddings_list = await asyncio.gather(*embedding_tasks) |
|
|
|
|
|
embeddings = np.concatenate(embeddings_list) |
|
|
for i, d in enumerate(list_data): |
|
|
d["vector"] = embeddings[i] |
|
|
results = self._client.upsert(collection_name=self.namespace, data=list_data) |
|
|
return results |
|
|
|
|
|
async def query( |
|
|
self, query: str, top_k: int, ids: list[str] | None = None |
|
|
) -> list[dict[str, Any]]: |
|
|
embedding = await self.embedding_func( |
|
|
[query], _priority=5 |
|
|
) |
|
|
results = self._client.search( |
|
|
collection_name=self.namespace, |
|
|
data=embedding, |
|
|
limit=top_k, |
|
|
output_fields=list(self.meta_fields) + ["created_at"], |
|
|
search_params={ |
|
|
"metric_type": "COSINE", |
|
|
"params": {"radius": self.cosine_better_than_threshold}, |
|
|
}, |
|
|
) |
|
|
print(results) |
|
|
return [ |
|
|
{ |
|
|
**dp["entity"], |
|
|
"id": dp["id"], |
|
|
"distance": dp["distance"], |
|
|
|
|
|
"created_at": dp.get("created_at"), |
|
|
} |
|
|
for dp in results[0] |
|
|
] |
|
|
|
|
|
async def index_done_callback(self) -> None: |
|
|
|
|
|
pass |
|
|
|
|
|
async def delete_entity(self, entity_name: str) -> None: |
|
|
"""Delete an entity from the vector database |
|
|
|
|
|
Args: |
|
|
entity_name: The name of the entity to delete |
|
|
""" |
|
|
try: |
|
|
|
|
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-") |
|
|
logger.debug( |
|
|
f"Attempting to delete entity {entity_name} with ID {entity_id}" |
|
|
) |
|
|
|
|
|
|
|
|
result = self._client.delete( |
|
|
collection_name=self.namespace, pks=[entity_id] |
|
|
) |
|
|
|
|
|
if result and result.get("delete_count", 0) > 0: |
|
|
logger.debug(f"Successfully deleted entity {entity_name}") |
|
|
else: |
|
|
logger.debug(f"Entity {entity_name} not found in storage") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error deleting entity {entity_name}: {e}") |
|
|
|
|
|
async def delete_entity_relation(self, entity_name: str) -> None: |
|
|
"""Delete all relations associated with an entity |
|
|
|
|
|
Args: |
|
|
entity_name: The name of the entity whose relations should be deleted |
|
|
""" |
|
|
try: |
|
|
|
|
|
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"' |
|
|
|
|
|
|
|
|
results = self._client.query( |
|
|
collection_name=self.namespace, filter=expr, output_fields=["id"] |
|
|
) |
|
|
|
|
|
if not results or len(results) == 0: |
|
|
logger.debug(f"No relations found for entity {entity_name}") |
|
|
return |
|
|
|
|
|
|
|
|
relation_ids = [item["id"] for item in results] |
|
|
logger.debug( |
|
|
f"Found {len(relation_ids)} relations for entity {entity_name}" |
|
|
) |
|
|
|
|
|
|
|
|
if relation_ids: |
|
|
delete_result = self._client.delete( |
|
|
collection_name=self.namespace, pks=relation_ids |
|
|
) |
|
|
|
|
|
logger.debug( |
|
|
f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}" |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error deleting relations for {entity_name}: {e}") |
|
|
|
|
|
async def delete(self, ids: list[str]) -> None: |
|
|
"""Delete vectors with specified IDs |
|
|
|
|
|
Args: |
|
|
ids: List of vector IDs to be deleted |
|
|
""" |
|
|
try: |
|
|
|
|
|
result = self._client.delete(collection_name=self.namespace, pks=ids) |
|
|
|
|
|
if result and result.get("delete_count", 0) > 0: |
|
|
logger.debug( |
|
|
f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}" |
|
|
) |
|
|
else: |
|
|
logger.debug(f"No vectors were deleted from {self.namespace}") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}") |
|
|
|
|
|
async def get_by_id(self, id: str) -> dict[str, Any] | None: |
|
|
"""Get vector data by its ID |
|
|
|
|
|
Args: |
|
|
id: The unique identifier of the vector |
|
|
|
|
|
Returns: |
|
|
The vector data if found, or None if not found |
|
|
""" |
|
|
try: |
|
|
|
|
|
result = self._client.query( |
|
|
collection_name=self.namespace, |
|
|
filter=f'id == "{id}"', |
|
|
output_fields=list(self.meta_fields) + ["id", "created_at"], |
|
|
) |
|
|
|
|
|
if not result or len(result) == 0: |
|
|
return None |
|
|
|
|
|
|
|
|
if "created_at" not in result[0]: |
|
|
result[0]["created_at"] = None |
|
|
|
|
|
return result[0] |
|
|
except Exception as e: |
|
|
logger.error(f"Error retrieving vector data for ID {id}: {e}") |
|
|
return None |
|
|
|
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]: |
|
|
"""Get multiple vector data by their IDs |
|
|
|
|
|
Args: |
|
|
ids: List of unique identifiers |
|
|
|
|
|
Returns: |
|
|
List of vector data objects that were found |
|
|
""" |
|
|
if not ids: |
|
|
return [] |
|
|
|
|
|
try: |
|
|
|
|
|
id_list = '", "'.join(ids) |
|
|
filter_expr = f'id in ["{id_list}"]' |
|
|
|
|
|
|
|
|
result = self._client.query( |
|
|
collection_name=self.namespace, |
|
|
filter=filter_expr, |
|
|
output_fields=list(self.meta_fields) + ["id", "created_at"], |
|
|
) |
|
|
|
|
|
|
|
|
for item in result: |
|
|
if "created_at" not in item: |
|
|
item["created_at"] = None |
|
|
|
|
|
return result or [] |
|
|
except Exception as e: |
|
|
logger.error(f"Error retrieving vector data for IDs {ids}: {e}") |
|
|
return [] |
|
|
|
|
|
async def drop(self) -> dict[str, str]: |
|
|
"""Drop all vector data from storage and clean up resources |
|
|
|
|
|
This method will delete all data from the Milvus collection. |
|
|
|
|
|
Returns: |
|
|
dict[str, str]: Operation status and message |
|
|
- On success: {"status": "success", "message": "data dropped"} |
|
|
- On failure: {"status": "error", "message": "<error details>"} |
|
|
""" |
|
|
try: |
|
|
|
|
|
if self._client.has_collection(self.namespace): |
|
|
self._client.drop_collection(self.namespace) |
|
|
|
|
|
|
|
|
MilvusVectorDBStorage.create_collection_if_not_exist( |
|
|
self._client, |
|
|
self.namespace, |
|
|
dimension=self.embedding_func.embedding_dim, |
|
|
) |
|
|
|
|
|
logger.info( |
|
|
f"Process {os.getpid()} drop Milvus collection {self.namespace}" |
|
|
) |
|
|
return {"status": "success", "message": "data dropped"} |
|
|
except Exception as e: |
|
|
logger.error(f"Error dropping Milvus collection {self.namespace}: {e}") |
|
|
return {"status": "error", "message": str(e)} |
|
|
|