|  | import os | 
					
						
						|  | from lightrag import LightRAG, QueryParam | 
					
						
						|  | from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache | 
					
						
						|  | from lightrag.utils import EmbeddingFunc | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | 
					
						
						|  | WORKING_DIR = os.path.join(ROOT_DIR, "myKG") | 
					
						
						|  | if not os.path.exists(WORKING_DIR): | 
					
						
						|  | os.mkdir(WORKING_DIR) | 
					
						
						|  | print(f"WorkingDir: {WORKING_DIR}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["REDIS_URI"] = "redis://localhost:6379" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BATCH_SIZE_NODES = 500 | 
					
						
						|  | BATCH_SIZE_EDGES = 100 | 
					
						
						|  | os.environ["NEO4J_URI"] = "bolt://117.50.173.35:7687" | 
					
						
						|  | os.environ["NEO4J_USERNAME"] = "neo4j" | 
					
						
						|  | os.environ["NEO4J_PASSWORD"] = "12345678" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["MILVUS_URI"] = "http://117.50.173.35:19530" | 
					
						
						|  | os.environ["MILVUS_USER"] = "root" | 
					
						
						|  | os.environ["MILVUS_PASSWORD"] = "Milvus" | 
					
						
						|  | os.environ["MILVUS_DB_NAME"] = "lightrag" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | async def llm_model_func( | 
					
						
						|  | prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs | 
					
						
						|  | ) -> str: | 
					
						
						|  | return await openai_complete_if_cache( | 
					
						
						|  | "deepseek-chat", | 
					
						
						|  | prompt, | 
					
						
						|  | system_prompt=system_prompt, | 
					
						
						|  | history_messages=history_messages, | 
					
						
						|  | api_key="sk-91d0b59f25554251aa813ed756d79a6d", | 
					
						
						|  | base_url="https://api.deepseek.com", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | embedding_func = EmbeddingFunc( | 
					
						
						|  | embedding_dim=768, | 
					
						
						|  | max_token_size=512, | 
					
						
						|  | func=lambda texts: ollama_embed( | 
					
						
						|  | texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434" | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | rag = LightRAG( | 
					
						
						|  | working_dir=WORKING_DIR, | 
					
						
						|  | llm_model_func=llm_model_func, | 
					
						
						|  | llm_model_max_token_size=32768, | 
					
						
						|  | embedding_func=embedding_func, | 
					
						
						|  | chunk_token_size=512, | 
					
						
						|  | chunk_overlap_token_size=256, | 
					
						
						|  | kv_storage="RedisKVStorage", | 
					
						
						|  | graph_storage="Neo4JStorage", | 
					
						
						|  | vector_storage="MilvusVectorDBStorage", | 
					
						
						|  | doc_status_storage="RedisKVStorage", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | file = "../book.txt" | 
					
						
						|  | with open(file, "r", encoding="utf-8") as f: | 
					
						
						|  | rag.insert(f.read()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(rag.query("谁会3D建模 ?", param=QueryParam(mode="mix"))) | 
					
						
						|  |  |