|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import matplotlib |
|
|
|
|
|
matplotlib.use('Agg') |
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.animation import FuncAnimation, writers |
|
|
from mpl_toolkits.mplot3d import Axes3D |
|
|
import numpy as np |
|
|
import subprocess as sp |
|
|
import cv2 |
|
|
|
|
|
|
|
|
def get_resolution(filename): |
|
|
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', |
|
|
'-show_entries', 'stream=width,height', '-of', 'csv=p=0', filename] |
|
|
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: |
|
|
for line in pipe.stdout: |
|
|
w, h = line.decode().strip().split(',') |
|
|
return int(w), int(h) |
|
|
|
|
|
|
|
|
def get_fps(filename): |
|
|
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', |
|
|
'-show_entries', 'stream=r_frame_rate', '-of', 'csv=p=0', filename] |
|
|
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: |
|
|
for line in pipe.stdout: |
|
|
a, b = line.decode().strip().split('/') |
|
|
return int(a) / int(b) |
|
|
|
|
|
|
|
|
def read_video(filename, skip=0, limit=-1): |
|
|
|
|
|
w = 1000 |
|
|
h = 1002 |
|
|
|
|
|
command = ['ffmpeg', |
|
|
'-i', filename, |
|
|
'-f', 'image2pipe', |
|
|
'-pix_fmt', 'rgb24', |
|
|
'-vsync', '0', |
|
|
'-vcodec', 'rawvideo', '-'] |
|
|
|
|
|
i = 0 |
|
|
with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe: |
|
|
while True: |
|
|
data = pipe.stdout.read(w * h * 3) |
|
|
if not data: |
|
|
break |
|
|
i += 1 |
|
|
if i > limit and limit != -1: |
|
|
continue |
|
|
if i > skip: |
|
|
yield np.frombuffer(data, dtype='uint8').reshape((h, w, 3)) |
|
|
|
|
|
|
|
|
def downsample_tensor(X, factor): |
|
|
length = X.shape[0] // factor * factor |
|
|
return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1) |
|
|
|
|
|
|
|
|
def render_animation(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, |
|
|
limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0): |
|
|
""" |
|
|
TODO |
|
|
Render an animation. The supported output modes are: |
|
|
-- 'interactive': display an interactive figure |
|
|
(also works on notebooks if associated with %matplotlib inline) |
|
|
-- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). |
|
|
-- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). |
|
|
-- 'filename.gif': render and export the animation a gif file (requires imagemagick). |
|
|
""" |
|
|
plt.ioff() |
|
|
fig = plt.figure(figsize=(size * (1 + len(poses)), size)) |
|
|
ax_in = fig.add_subplot(1, 1 + len(poses), 1) |
|
|
ax_in.get_xaxis().set_visible(False) |
|
|
ax_in.get_yaxis().set_visible(False) |
|
|
ax_in.set_axis_off() |
|
|
ax_in.set_title('Input') |
|
|
|
|
|
ax_3d = [] |
|
|
lines_3d = [] |
|
|
trajectories = [] |
|
|
radius = 1.7 |
|
|
for index, (title, data) in enumerate(poses.items()): |
|
|
ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') |
|
|
ax.view_init(elev=15., azim=azim) |
|
|
ax.set_xlim3d([-radius / 2, radius / 2]) |
|
|
ax.set_zlim3d([0, radius]) |
|
|
ax.set_ylim3d([-radius / 2, radius / 2]) |
|
|
try: |
|
|
ax.set_aspect('equal') |
|
|
except NotImplementedError: |
|
|
ax.set_aspect('auto') |
|
|
ax.set_xticklabels([]) |
|
|
ax.set_yticklabels([]) |
|
|
ax.set_zticklabels([]) |
|
|
ax.dist = 7.5 |
|
|
ax.set_title(title) |
|
|
ax_3d.append(ax) |
|
|
lines_3d.append([]) |
|
|
trajectories.append(data[:, 0, [0, 1]]) |
|
|
poses = list(poses.values()) |
|
|
|
|
|
|
|
|
if input_video_path is None: |
|
|
|
|
|
all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') |
|
|
else: |
|
|
|
|
|
all_frames = [] |
|
|
for f in read_video(input_video_path, skip=input_video_skip, limit=limit): |
|
|
all_frames.append(f) |
|
|
effective_length = min(keypoints.shape[0], len(all_frames)) |
|
|
all_frames = all_frames[:effective_length] |
|
|
|
|
|
keypoints = keypoints[input_video_skip:] |
|
|
for idx in range(len(poses)): |
|
|
poses[idx] = poses[idx][input_video_skip:] |
|
|
|
|
|
if fps is None: |
|
|
fps = get_fps(input_video_path) |
|
|
|
|
|
if downsample > 1: |
|
|
keypoints = downsample_tensor(keypoints, downsample) |
|
|
all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') |
|
|
for idx in range(len(poses)): |
|
|
poses[idx] = downsample_tensor(poses[idx], downsample) |
|
|
trajectories[idx] = downsample_tensor(trajectories[idx], downsample) |
|
|
fps /= downsample |
|
|
|
|
|
initialized = False |
|
|
image = None |
|
|
lines = [] |
|
|
points = None |
|
|
|
|
|
if limit < 1: |
|
|
limit = len(all_frames) |
|
|
else: |
|
|
limit = min(limit, len(all_frames)) |
|
|
|
|
|
parents = skeleton.parents() |
|
|
|
|
|
def update_video(i): |
|
|
nonlocal initialized, image, lines, points |
|
|
|
|
|
for n, ax in enumerate(ax_3d): |
|
|
ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) |
|
|
ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) |
|
|
|
|
|
|
|
|
joints_right_2d = keypoints_metadata['keypoints_symmetry'][1] |
|
|
colors_2d = np.full(keypoints.shape[1], 'black') |
|
|
colors_2d[joints_right_2d] = 'red' |
|
|
if not initialized: |
|
|
image = ax_in.imshow(all_frames[i], aspect='equal') |
|
|
|
|
|
for j, j_parent in enumerate(parents): |
|
|
if j_parent == -1: |
|
|
continue |
|
|
|
|
|
if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': |
|
|
|
|
|
lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], |
|
|
[keypoints[i, j, 1], keypoints[i, j_parent, 1]], color='pink')) |
|
|
|
|
|
col = 'red' if j in skeleton.joints_right() else 'black' |
|
|
for n, ax in enumerate(ax_3d): |
|
|
pos = poses[n][i] |
|
|
lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], |
|
|
[pos[j, 1], pos[j_parent, 1]], |
|
|
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col)) |
|
|
|
|
|
points = ax_in.scatter(*keypoints[i].T, 10, color=colors_2d, edgecolors='white', zorder=10) |
|
|
|
|
|
initialized = True |
|
|
else: |
|
|
image.set_data(all_frames[i]) |
|
|
|
|
|
for j, j_parent in enumerate(parents): |
|
|
if j_parent == -1: |
|
|
continue |
|
|
|
|
|
if len(parents) == keypoints.shape[1] and keypoints_metadata['layout_name'] != 'coco': |
|
|
lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], |
|
|
[keypoints[i, j, 1], keypoints[i, j_parent, 1]]) |
|
|
|
|
|
for n, ax in enumerate(ax_3d): |
|
|
pos = poses[n][i] |
|
|
lines_3d[n][j - 1][0].set_xdata(np.array([pos[j, 0], pos[j_parent, 0]])) |
|
|
lines_3d[n][j - 1][0].set_ydata(np.array([pos[j, 1], pos[j_parent, 1]])) |
|
|
lines_3d[n][j - 1][0].set_3d_properties(np.array([pos[j, 2], pos[j_parent, 2]]), zdir='z') |
|
|
|
|
|
points.set_offsets(keypoints[i]) |
|
|
|
|
|
print('{}/{} '.format(i, limit), end='\r') |
|
|
|
|
|
fig.tight_layout() |
|
|
|
|
|
anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False) |
|
|
if output.endswith('.mp4'): |
|
|
Writer = writers['ffmpeg'] |
|
|
writer = Writer(fps=fps, metadata={}, bitrate=bitrate) |
|
|
anim.save(output, writer=writer) |
|
|
elif output.endswith('.gif'): |
|
|
anim.save(output, dpi=80, writer='imagemagick') |
|
|
else: |
|
|
raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') |
|
|
plt.close() |