Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
import numpy as np | |
from unittest import TestCase | |
import torch | |
from fvcore.common.param_scheduler import ( | |
CosineParamScheduler, | |
MultiStepParamScheduler, | |
StepWithFixedGammaParamScheduler, | |
) | |
from torch import nn | |
from detectron2.solver import LRMultiplier, WarmupParamScheduler, build_lr_scheduler | |
class TestScheduler(TestCase): | |
def test_warmup_multistep(self): | |
p = nn.Parameter(torch.zeros(0)) | |
opt = torch.optim.SGD([p], lr=5) | |
multiplier = WarmupParamScheduler( | |
MultiStepParamScheduler( | |
[1, 0.1, 0.01, 0.001], | |
milestones=[10, 15, 20], | |
num_updates=30, | |
), | |
0.001, | |
5 / 30, | |
) | |
sched = LRMultiplier(opt, multiplier, 30) | |
# This is an equivalent of: | |
# sched = WarmupMultiStepLR( | |
# opt, milestones=[10, 15, 20], gamma=0.1, warmup_factor=0.001, warmup_iters=5) | |
p.sum().backward() | |
opt.step() | |
lrs = [0.005] | |
for _ in range(30): | |
sched.step() | |
lrs.append(opt.param_groups[0]["lr"]) | |
self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001])) | |
self.assertTrue(np.allclose(lrs[5:10], 5.0)) | |
self.assertTrue(np.allclose(lrs[10:15], 0.5)) | |
self.assertTrue(np.allclose(lrs[15:20], 0.05)) | |
self.assertTrue(np.allclose(lrs[20:], 0.005)) | |
def test_warmup_cosine(self): | |
p = nn.Parameter(torch.zeros(0)) | |
opt = torch.optim.SGD([p], lr=5) | |
multiplier = WarmupParamScheduler( | |
CosineParamScheduler(1, 0), | |
0.001, | |
5 / 30, | |
) | |
sched = LRMultiplier(opt, multiplier, 30) | |
p.sum().backward() | |
opt.step() | |
self.assertEqual(opt.param_groups[0]["lr"], 0.005) | |
lrs = [0.005] | |
for _ in range(30): | |
sched.step() | |
lrs.append(opt.param_groups[0]["lr"]) | |
for idx, lr in enumerate(lrs): | |
expected_cosine = 2.5 * (1.0 + math.cos(math.pi * idx / 30)) | |
if idx >= 5: | |
self.assertAlmostEqual(lr, expected_cosine) | |
else: | |
self.assertNotAlmostEqual(lr, expected_cosine) | |
def test_warmup_cosine_end_value(self): | |
from detectron2.config import CfgNode, get_cfg | |
def _test_end_value(cfg_dict): | |
cfg = get_cfg() | |
cfg.merge_from_other_cfg(CfgNode(cfg_dict)) | |
p = nn.Parameter(torch.zeros(0)) | |
opt = torch.optim.SGD([p], lr=cfg.SOLVER.BASE_LR) | |
scheduler = build_lr_scheduler(cfg, opt) | |
p.sum().backward() | |
opt.step() | |
self.assertEqual( | |
opt.param_groups[0]["lr"], cfg.SOLVER.BASE_LR * cfg.SOLVER.WARMUP_FACTOR | |
) | |
lrs = [] | |
for _ in range(cfg.SOLVER.MAX_ITER): | |
scheduler.step() | |
lrs.append(opt.param_groups[0]["lr"]) | |
self.assertAlmostEqual(lrs[-1], cfg.SOLVER.BASE_LR_END) | |
_test_end_value( | |
{ | |
"SOLVER": { | |
"LR_SCHEDULER_NAME": "WarmupCosineLR", | |
"MAX_ITER": 100, | |
"WARMUP_ITERS": 10, | |
"WARMUP_FACTOR": 0.1, | |
"BASE_LR": 5.0, | |
"BASE_LR_END": 0.0, | |
} | |
} | |
) | |
_test_end_value( | |
{ | |
"SOLVER": { | |
"LR_SCHEDULER_NAME": "WarmupCosineLR", | |
"MAX_ITER": 100, | |
"WARMUP_ITERS": 10, | |
"WARMUP_FACTOR": 0.1, | |
"BASE_LR": 5.0, | |
"BASE_LR_END": 0.5, | |
} | |
} | |
) | |
def test_warmup_stepwithfixedgamma(self): | |
p = nn.Parameter(torch.zeros(0)) | |
opt = torch.optim.SGD([p], lr=5) | |
multiplier = WarmupParamScheduler( | |
StepWithFixedGammaParamScheduler( | |
base_value=1.0, | |
gamma=0.1, | |
num_decays=4, | |
num_updates=30, | |
), | |
0.001, | |
5 / 30, | |
rescale_interval=True, | |
) | |
sched = LRMultiplier(opt, multiplier, 30) | |
p.sum().backward() | |
opt.step() | |
lrs = [0.005] | |
for _ in range(29): | |
sched.step() | |
lrs.append(opt.param_groups[0]["lr"]) | |
self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001])) | |
self.assertTrue(np.allclose(lrs[5:10], 5.0)) | |
self.assertTrue(np.allclose(lrs[10:15], 0.5)) | |
self.assertTrue(np.allclose(lrs[15:20], 0.05)) | |
self.assertTrue(np.allclose(lrs[20:25], 0.005)) | |
self.assertTrue(np.allclose(lrs[25:], 0.0005)) | |
# Calling sche.step() after the last training iteration is done will trigger IndexError | |
with self.assertRaises(IndexError, msg="list index out of range"): | |
sched.step() | |