rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
No virus
11.7 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
from torch.nn import functional as F
from detectron2.layers import cat, shapes_to_tensor
from detectron2.structures import BitMasks, Boxes
"""
Shape shorthand in this module:
N: minibatch dimension size, i.e. the number of RoIs for instance segmenation or the
number of images for semantic segmenation.
R: number of ROIs, combined over all images, in the minibatch
P: number of points
"""
def point_sample(input, point_coords, **kwargs):
"""
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
[0, 1] x [0, 1] square.
Args:
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
[0, 1] x [0, 1] normalized point coordinates.
Returns:
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
features for points in `point_coords`. The features are obtained via bilinear
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
"""
add_dim = False
if point_coords.dim() == 3:
add_dim = True
point_coords = point_coords.unsqueeze(2)
output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
if add_dim:
output = output.squeeze(3)
return output
def generate_regular_grid_point_coords(R, side_size, device):
"""
Generate regular square grid of points in [0, 1] x [0, 1] coordinate space.
Args:
R (int): The number of grids to sample, one for each region.
side_size (int): The side size of the regular grid.
device (torch.device): Desired device of returned tensor.
Returns:
(Tensor): A tensor of shape (R, side_size^2, 2) that contains coordinates
for the regular grids.
"""
aff = torch.tensor([[[0.5, 0, 0.5], [0, 0.5, 0.5]]], device=device)
r = F.affine_grid(aff, torch.Size((1, 1, side_size, side_size)), align_corners=False)
return r.view(1, -1, 2).expand(R, -1, -1)
def get_uncertain_point_coords_with_randomness(
coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio
):
"""
Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties
are calculated for each point using 'uncertainty_func' function that takes point's logit
prediction as input.
See PointRend paper for details.
Args:
coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for
class-specific or class-agnostic prediction.
uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that
contains logit predictions for P points and returns their uncertainties as a Tensor of
shape (N, 1, P).
num_points (int): The number of points P to sample.
oversample_ratio (int): Oversampling parameter.
importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling.
Returns:
point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P
sampled points.
"""
assert oversample_ratio >= 1
assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0
num_boxes = coarse_logits.shape[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device)
point_logits = point_sample(coarse_logits, point_coords, align_corners=False)
# It is crucial to calculate uncertainty based on the sampled prediction value for the points.
# Calculating uncertainties of the coarse predictions first and sampling them for points leads
# to incorrect results.
# To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between
# two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value.
# However, if we calculate uncertainties for the coarse predictions first,
# both will have -1 uncertainty, and the sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device)
idx += shift[:, None]
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
num_boxes, num_uncertain_points, 2
)
if num_random_points > 0:
point_coords = cat(
[
point_coords,
torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device),
],
dim=1,
)
return point_coords
def get_uncertain_point_coords_on_grid(uncertainty_map, num_points):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
h_step = 1.0 / float(H)
w_step = 1.0 / float(W)
num_points = min(H * W, num_points)
point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1]
point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device)
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
return point_indices, point_coords
def point_sample_fine_grained_features(features_list, feature_scales, boxes, point_coords):
"""
Get features from feature maps in `features_list` that correspond to specific point coordinates
inside each bounding box from `boxes`.
Args:
features_list (list[Tensor]): A list of feature map tensors to get features from.
feature_scales (list[float]): A list of scales for tensors in `features_list`.
boxes (list[Boxes]): A list of I Boxes objects that contain R_1 + ... + R_I = R boxes all
together.
point_coords (Tensor): A tensor of shape (R, P, 2) that contains
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points.
Returns:
point_features (Tensor): A tensor of shape (R, C, P) that contains features sampled
from all features maps in feature_list for P sampled points for all R boxes in `boxes`.
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-level
coordinates of P points.
"""
cat_boxes = Boxes.cat(boxes)
num_boxes = [b.tensor.size(0) for b in boxes]
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords)
split_point_coords_wrt_image = torch.split(point_coords_wrt_image, num_boxes)
point_features = []
for idx_img, point_coords_wrt_image_per_image in enumerate(split_point_coords_wrt_image):
point_features_per_image = []
for idx_feature, feature_map in enumerate(features_list):
h, w = feature_map.shape[-2:]
scale = shapes_to_tensor([w, h]) / feature_scales[idx_feature]
point_coords_scaled = point_coords_wrt_image_per_image / scale.to(feature_map.device)
point_features_per_image.append(
point_sample(
feature_map[idx_img].unsqueeze(0),
point_coords_scaled.unsqueeze(0),
align_corners=False,
)
.squeeze(0)
.transpose(1, 0)
)
point_features.append(cat(point_features_per_image, dim=1))
return cat(point_features, dim=0), point_coords_wrt_image
def get_point_coords_wrt_image(boxes_coords, point_coords):
"""
Convert box-normalized [0, 1] x [0, 1] point cooordinates to image-level coordinates.
Args:
boxes_coords (Tensor): A tensor of shape (R, 4) that contains bounding boxes.
coordinates.
point_coords (Tensor): A tensor of shape (R, P, 2) that contains
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points.
Returns:
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains
image-normalized coordinates of P sampled points.
"""
with torch.no_grad():
point_coords_wrt_image = point_coords.clone()
point_coords_wrt_image[:, :, 0] = point_coords_wrt_image[:, :, 0] * (
boxes_coords[:, None, 2] - boxes_coords[:, None, 0]
)
point_coords_wrt_image[:, :, 1] = point_coords_wrt_image[:, :, 1] * (
boxes_coords[:, None, 3] - boxes_coords[:, None, 1]
)
point_coords_wrt_image[:, :, 0] += boxes_coords[:, None, 0]
point_coords_wrt_image[:, :, 1] += boxes_coords[:, None, 1]
return point_coords_wrt_image
def sample_point_labels(instances, point_coords):
"""
Sample point labels from ground truth mask given point_coords.
Args:
instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. So, i_th elememt of the list contains R_i objects and R_1 + ... + R_N is
equal to R. The ground-truth gt_masks in each instance will be used to compute labels.
points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of
instances and P is the number of points for each instance. The coordinates are in
the absolute image pixel coordinate space, i.e. [0, H] x [0, W].
Returns:
Tensor: A tensor of shape (R, P) that contains the labels of P sampled points.
"""
with torch.no_grad():
gt_mask_logits = []
point_coords_splits = torch.split(
point_coords, [len(instances_per_image) for instances_per_image in instances]
)
for i, instances_per_image in enumerate(instances):
if len(instances_per_image) == 0:
continue
assert isinstance(
instances_per_image.gt_masks, BitMasks
), "Point head works with GT in 'bitmask' format. Set INPUT.MASK_FORMAT to 'bitmask'."
gt_bit_masks = instances_per_image.gt_masks.tensor
h, w = instances_per_image.gt_masks.image_size
scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device)
points_coord_grid_sample_format = point_coords_splits[i] / scale
gt_mask_logits.append(
point_sample(
gt_bit_masks.to(torch.float32).unsqueeze(1),
points_coord_grid_sample_format,
align_corners=False,
).squeeze(1)
)
point_labels = cat(gt_mask_logits)
return point_labels