rlawjdghek's picture
detectron2
a9a0ec2
raw
history blame
9.6 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# Reference: https://github.com/bowenc0221/panoptic-deeplab/blob/master/segmentation/model/post_processing/instance_post_processing.py # noqa
from collections import Counter
import torch
import torch.nn.functional as F
def find_instance_center(center_heatmap, threshold=0.1, nms_kernel=3, top_k=None):
"""
Find the center points from the center heatmap.
Args:
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
Returns:
A Tensor of shape [K, 2] where K is the number of center points. The
order of second dim is (y, x).
"""
# Thresholding, setting values below threshold to -1.
center_heatmap = F.threshold(center_heatmap, threshold, -1)
# NMS
nms_padding = (nms_kernel - 1) // 2
center_heatmap_max_pooled = F.max_pool2d(
center_heatmap, kernel_size=nms_kernel, stride=1, padding=nms_padding
)
center_heatmap[center_heatmap != center_heatmap_max_pooled] = -1
# Squeeze first two dimensions.
center_heatmap = center_heatmap.squeeze()
assert len(center_heatmap.size()) == 2, "Something is wrong with center heatmap dimension."
# Find non-zero elements.
if top_k is None:
return torch.nonzero(center_heatmap > 0)
else:
# find top k centers.
top_k_scores, _ = torch.topk(torch.flatten(center_heatmap), top_k)
return torch.nonzero(center_heatmap > top_k_scores[-1].clamp_(min=0))
def group_pixels(center_points, offsets):
"""
Gives each pixel in the image an instance id.
Args:
center_points: A Tensor of shape [K, 2] where K is the number of center points.
The order of second dim is (y, x).
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
Returns:
A Tensor of shape [1, H, W] with values in range [1, K], which represents
the center this pixel belongs to.
"""
height, width = offsets.size()[1:]
# Generates a coordinate map, where each location is the coordinate of
# that location.
y_coord, x_coord = torch.meshgrid(
torch.arange(height, dtype=offsets.dtype, device=offsets.device),
torch.arange(width, dtype=offsets.dtype, device=offsets.device),
)
coord = torch.cat((y_coord.unsqueeze(0), x_coord.unsqueeze(0)), dim=0)
center_loc = coord + offsets
center_loc = center_loc.flatten(1).T.unsqueeze_(0) # [1, H*W, 2]
center_points = center_points.unsqueeze(1) # [K, 1, 2]
# Distance: [K, H*W].
distance = torch.norm(center_points - center_loc, dim=-1)
# Finds center with minimum distance at each location, offset by 1, to
# reserve id=0 for stuff.
instance_id = torch.argmin(distance, dim=0).reshape((1, height, width)) + 1
return instance_id
def get_instance_segmentation(
sem_seg, center_heatmap, offsets, thing_seg, thing_ids, threshold=0.1, nms_kernel=3, top_k=None
):
"""
Post-processing for instance segmentation, gets class agnostic instance id.
Args:
sem_seg: A Tensor of shape [1, H, W], predicted semantic label.
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
thing_seg: A Tensor of shape [1, H, W], predicted foreground mask,
if not provided, inference from semantic prediction.
thing_ids: A set of ids from contiguous category ids belonging
to thing categories.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
Returns:
A Tensor of shape [1, H, W] with value 0 represent stuff (not instance)
and other positive values represent different instances.
A Tensor of shape [1, K, 2] where K is the number of center points.
The order of second dim is (y, x).
"""
center_points = find_instance_center(
center_heatmap, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k
)
if center_points.size(0) == 0:
return torch.zeros_like(sem_seg), center_points.unsqueeze(0)
ins_seg = group_pixels(center_points, offsets)
return thing_seg * ins_seg, center_points.unsqueeze(0)
def merge_semantic_and_instance(
sem_seg, ins_seg, semantic_thing_seg, label_divisor, thing_ids, stuff_area, void_label
):
"""
Post-processing for panoptic segmentation, by merging semantic segmentation
label and class agnostic instance segmentation label.
Args:
sem_seg: A Tensor of shape [1, H, W], predicted category id for each pixel.
ins_seg: A Tensor of shape [1, H, W], predicted instance id for each pixel.
semantic_thing_seg: A Tensor of shape [1, H, W], predicted foreground mask.
label_divisor: An integer, used to convert panoptic id =
semantic id * label_divisor + instance_id.
thing_ids: Set, a set of ids from contiguous category ids belonging
to thing categories.
stuff_area: An integer, remove stuff whose area is less tan stuff_area.
void_label: An integer, indicates the region has no confident prediction.
Returns:
A Tensor of shape [1, H, W].
"""
# In case thing mask does not align with semantic prediction.
pan_seg = torch.zeros_like(sem_seg) + void_label
is_thing = (ins_seg > 0) & (semantic_thing_seg > 0)
# Keep track of instance id for each class.
class_id_tracker = Counter()
# Paste thing by majority voting.
instance_ids = torch.unique(ins_seg)
for ins_id in instance_ids:
if ins_id == 0:
continue
# Make sure only do majority voting within `semantic_thing_seg`.
thing_mask = (ins_seg == ins_id) & is_thing
if torch.nonzero(thing_mask).size(0) == 0:
continue
class_id, _ = torch.mode(sem_seg[thing_mask].view(-1))
class_id_tracker[class_id.item()] += 1
new_ins_id = class_id_tracker[class_id.item()]
pan_seg[thing_mask] = class_id * label_divisor + new_ins_id
# Paste stuff to unoccupied area.
class_ids = torch.unique(sem_seg)
for class_id in class_ids:
if class_id.item() in thing_ids:
# thing class
continue
# Calculate stuff area.
stuff_mask = (sem_seg == class_id) & (ins_seg == 0)
if stuff_mask.sum().item() >= stuff_area:
pan_seg[stuff_mask] = class_id * label_divisor
return pan_seg
def get_panoptic_segmentation(
sem_seg,
center_heatmap,
offsets,
thing_ids,
label_divisor,
stuff_area,
void_label,
threshold=0.1,
nms_kernel=7,
top_k=200,
foreground_mask=None,
):
"""
Post-processing for panoptic segmentation.
Args:
sem_seg: A Tensor of shape [1, H, W] of predicted semantic label.
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output.
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of
second dim is (offset_y, offset_x).
thing_ids: A set of ids from contiguous category ids belonging
to thing categories.
label_divisor: An integer, used to convert panoptic id =
semantic id * label_divisor + instance_id.
stuff_area: An integer, remove stuff whose area is less tan stuff_area.
void_label: An integer, indicates the region has no confident prediction.
threshold: A float, threshold applied to center heatmap score.
nms_kernel: An integer, NMS max pooling kernel size.
top_k: An integer, top k centers to keep.
foreground_mask: Optional, A Tensor of shape [1, H, W] of predicted
binary foreground mask. If not provided, it will be generated from
sem_seg.
Returns:
A Tensor of shape [1, H, W], int64.
"""
if sem_seg.dim() != 3 and sem_seg.size(0) != 1:
raise ValueError("Semantic prediction with un-supported shape: {}.".format(sem_seg.size()))
if center_heatmap.dim() != 3:
raise ValueError(
"Center prediction with un-supported dimension: {}.".format(center_heatmap.dim())
)
if offsets.dim() != 3:
raise ValueError("Offset prediction with un-supported dimension: {}.".format(offsets.dim()))
if foreground_mask is not None:
if foreground_mask.dim() != 3 and foreground_mask.size(0) != 1:
raise ValueError(
"Foreground prediction with un-supported shape: {}.".format(sem_seg.size())
)
thing_seg = foreground_mask
else:
# inference from semantic segmentation
thing_seg = torch.zeros_like(sem_seg)
for thing_class in list(thing_ids):
thing_seg[sem_seg == thing_class] = 1
instance, center = get_instance_segmentation(
sem_seg,
center_heatmap,
offsets,
thing_seg,
thing_ids,
threshold=threshold,
nms_kernel=nms_kernel,
top_k=top_k,
)
panoptic = merge_semantic_and_instance(
sem_seg, instance, thing_seg, label_divisor, thing_ids, stuff_area, void_label
)
return panoptic, center