rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
7.77 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
from copy import copy
import cv2
import torch
from fvcore.common.benchmark import benchmark
from torch.nn import functional as F
from detectron2.layers.roi_align import ROIAlign, roi_align
class ROIAlignTest(unittest.TestCase):
def test_forward_output(self):
input = np.arange(25).reshape(5, 5).astype("float32")
"""
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
"""
output = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=False)
output_correct = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=True)
# without correction:
old_results = [
[7.5, 8, 8.5, 9],
[10, 10.5, 11, 11.5],
[12.5, 13, 13.5, 14],
[15, 15.5, 16, 16.5],
]
# with 0.5 correction:
correct_results = [
[4.5, 5.0, 5.5, 6.0],
[7.0, 7.5, 8.0, 8.5],
[9.5, 10.0, 10.5, 11.0],
[12.0, 12.5, 13.0, 13.5],
]
# This is an upsampled version of [[6, 7], [11, 12]]
self.assertTrue(np.allclose(output.flatten(), np.asarray(old_results).flatten()))
self.assertTrue(
np.allclose(output_correct.flatten(), np.asarray(correct_results).flatten())
)
# Also see similar issues in tensorflow at
# https://github.com/tensorflow/tensorflow/issues/26278
def test_resize(self):
H, W = 30, 30
input = np.random.rand(H, W).astype("float32") * 100
box = [10, 10, 20, 20]
output = self._simple_roialign(input, box, (5, 5), aligned=True)
input2x = cv2.resize(input, (W // 2, H // 2), interpolation=cv2.INTER_LINEAR)
box2x = [x / 2 for x in box]
output2x = self._simple_roialign(input2x, box2x, (5, 5), aligned=True)
diff = np.abs(output2x - output)
self.assertTrue(diff.max() < 1e-4)
def test_grid_sample_equivalence(self):
H, W = 30, 30
input = np.random.rand(H, W).astype("float32") * 100
box = [10, 10, 20, 20]
for ratio in [1, 2, 3]:
output = self._simple_roialign(input, box, (5, 5), sampling_ratio=ratio)
output_grid_sample = grid_sample_roi_align(
torch.from_numpy(input[None, None, :, :]).float(),
torch.as_tensor(box).float()[None, :],
5,
1.0,
ratio,
)
self.assertTrue(torch.allclose(output, output_grid_sample))
def _simple_roialign(self, img, box, resolution, sampling_ratio=0, aligned=True):
"""
RoiAlign with scale 1.0.
"""
if isinstance(resolution, int):
resolution = (resolution, resolution)
op = ROIAlign(resolution, 1.0, sampling_ratio, aligned=aligned)
input = torch.from_numpy(img[None, None, :, :].astype("float32"))
rois = [0] + list(box)
rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32"))
output = op.forward(input, rois)
if torch.cuda.is_available():
output_cuda = op.forward(input.cuda(), rois.cuda()).cpu()
self.assertTrue(torch.allclose(output, output_cuda))
return output[0, 0]
def _simple_roialign_with_grad(self, img, box, resolution, device):
if isinstance(resolution, int):
resolution = (resolution, resolution)
op = ROIAlign(resolution, 1.0, 0, aligned=True)
input = torch.from_numpy(img[None, None, :, :].astype("float32"))
rois = [0] + list(box)
rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32"))
input = input.to(device=device)
rois = rois.to(device=device)
input.requires_grad = True
output = op.forward(input, rois)
return input, output
def test_empty_box(self):
img = np.random.rand(5, 5)
box = [3, 4, 5, 4]
o = self._simple_roialign(img, box, 7)
self.assertTrue(o.shape == (7, 7))
self.assertTrue((o == 0).all())
for dev in ["cpu"] + ["cuda"] if torch.cuda.is_available() else []:
input, output = self._simple_roialign_with_grad(img, box, 7, torch.device(dev))
output.sum().backward()
self.assertTrue(torch.allclose(input.grad, torch.zeros_like(input)))
def test_empty_batch(self):
input = torch.zeros(0, 3, 10, 10, dtype=torch.float32)
rois = torch.zeros(0, 5, dtype=torch.float32)
op = ROIAlign((7, 7), 1.0, 0, aligned=True)
output = op.forward(input, rois)
self.assertTrue(output.shape == (0, 3, 7, 7))
def grid_sample_roi_align(input, boxes, output_size, scale, sampling_ratio):
# unlike true roi_align, this does not support different batch_idx
from detectron2.projects.point_rend.point_features import (
generate_regular_grid_point_coords,
get_point_coords_wrt_image,
point_sample,
)
N, _, H, W = input.shape
R = len(boxes)
assert N == 1
boxes = boxes * scale
grid = generate_regular_grid_point_coords(R, output_size * sampling_ratio, device=boxes.device)
coords = get_point_coords_wrt_image(boxes, grid)
coords = coords / torch.as_tensor([W, H], device=coords.device) # R, s^2, 2
res = point_sample(input, coords.unsqueeze(0), align_corners=False) # 1,C, R,s^2
res = (
res.squeeze(0)
.permute(1, 0, 2)
.reshape(R, -1, output_size * sampling_ratio, output_size * sampling_ratio)
)
res = F.avg_pool2d(res, sampling_ratio)
return res
def benchmark_roi_align():
def random_boxes(mean_box, stdev, N, maxsize):
ret = torch.rand(N, 4) * stdev + torch.tensor(mean_box, dtype=torch.float)
ret.clamp_(min=0, max=maxsize)
return ret
def func(shape, nboxes_per_img, sampling_ratio, device, box_size="large"):
N, _, H, _ = shape
input = torch.rand(*shape)
boxes = []
batch_idx = []
for k in range(N):
if box_size == "large":
b = random_boxes([80, 80, 130, 130], 24, nboxes_per_img, H)
else:
b = random_boxes([100, 100, 110, 110], 4, nboxes_per_img, H)
boxes.append(b)
batch_idx.append(torch.zeros(nboxes_per_img, 1, dtype=torch.float32) + k)
boxes = torch.cat(boxes, axis=0)
batch_idx = torch.cat(batch_idx, axis=0)
boxes = torch.cat([batch_idx, boxes], axis=1)
input = input.to(device=device)
boxes = boxes.to(device=device)
def bench():
if False and sampling_ratio > 0 and N == 1:
# enable to benchmark grid_sample (slower)
grid_sample_roi_align(input, boxes[:, 1:], 7, 1.0, sampling_ratio)
else:
roi_align(input, boxes, 7, 1.0, sampling_ratio, True)
if device == "cuda":
torch.cuda.synchronize()
return bench
def gen_args(arg):
args = []
for size in ["small", "large"]:
for ratio in [0, 2]:
args.append(copy(arg))
args[-1]["sampling_ratio"] = ratio
args[-1]["box_size"] = size
return args
arg = dict(shape=(1, 512, 256, 256), nboxes_per_img=512, device="cuda")
benchmark(func, "cuda_roialign", gen_args(arg), num_iters=20, warmup_iters=1)
arg.update({"device": "cpu", "shape": (1, 256, 128, 128)})
benchmark(func, "cpu_roialign", gen_args(arg), num_iters=5, warmup_iters=1)
if __name__ == "__main__":
if torch.cuda.is_available():
benchmark_roi_align()
unittest.main()