Spaces:
Running
on
Zero
Running
on
Zero
StableVITON
/
preprocess
/detectron2
/projects
/Rethinking-BatchNorm
/retinanet-eval-domain-specific.py
#!/usr/bin/env python | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import sys | |
import torch | |
from fvcore.nn.precise_bn import update_bn_stats | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import LazyConfig, instantiate | |
from detectron2.evaluation import inference_on_dataset | |
from detectron2.layers import CycleBatchNormList | |
from detectron2.utils.events import EventStorage | |
from detectron2.utils.logger import setup_logger | |
logger = setup_logger() | |
setup_logger(name="fvcore") | |
if __name__ == "__main__": | |
checkpoint = sys.argv[1] | |
cfg = LazyConfig.load_rel("./configs/retinanet_SyncBNhead.py") | |
model = cfg.model | |
model.head.norm = lambda c: CycleBatchNormList(len(model.head_in_features), num_features=c) | |
model = instantiate(model) | |
model.cuda() | |
DetectionCheckpointer(model).load(checkpoint) | |
cfg.dataloader.train.total_batch_size = 8 | |
logger.info("Running PreciseBN ...") | |
with EventStorage(), torch.no_grad(): | |
update_bn_stats(model, instantiate(cfg.dataloader.train), 500) | |
logger.info("Running evaluation ...") | |
inference_on_dataset( | |
model, instantiate(cfg.dataloader.test), instantiate(cfg.dataloader.evaluator) | |
) | |