Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import glob | |
import json | |
import os | |
import random | |
import tempfile | |
import unittest | |
import zipfile | |
import torch | |
from torch import Tensor, nn | |
from detectron2 import model_zoo | |
from detectron2.config import get_cfg | |
from detectron2.config.instantiate import dump_dataclass, instantiate | |
from detectron2.export import dump_torchscript_IR, scripting_with_instances | |
from detectron2.export.flatten import TracingAdapter, flatten_to_tuple | |
from detectron2.export.torchscript_patch import patch_builtin_len | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling import build_backbone | |
from detectron2.modeling.postprocessing import detector_postprocess | |
from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead | |
from detectron2.structures import Boxes, Instances | |
from detectron2.utils.env import TORCH_VERSION | |
from detectron2.utils.testing import ( | |
assert_instances_allclose, | |
convert_scripted_instances, | |
get_sample_coco_image, | |
random_boxes, | |
reload_script_model, | |
skipIfOnCPUCI, | |
) | |
""" | |
https://detectron2.readthedocs.io/tutorials/deployment.html | |
contains some explanations of this file. | |
""" | |
class TestScripting(unittest.TestCase): | |
def testMaskRCNNFPN(self): | |
self._test_rcnn_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") | |
def testMaskRCNNC4(self): | |
self._test_rcnn_model("COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml") | |
def testRetinaNet(self): | |
self._test_retinanet_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml") | |
def _test_rcnn_model(self, config_path): | |
model = model_zoo.get(config_path, trained=True) | |
model.eval() | |
fields = { | |
"proposal_boxes": Boxes, | |
"objectness_logits": Tensor, | |
"pred_boxes": Boxes, | |
"scores": Tensor, | |
"pred_classes": Tensor, | |
"pred_masks": Tensor, | |
} | |
script_model = scripting_with_instances(model, fields) | |
script_model = reload_script_model(script_model) | |
# Test that batch inference with different shapes are supported | |
image = get_sample_coco_image() | |
small_image = nn.functional.interpolate(image, scale_factor=0.5) | |
inputs = [{"image": image}, {"image": small_image}] | |
with torch.no_grad(): | |
instance = model.inference(inputs, do_postprocess=False)[0] | |
scripted_instance = script_model.inference(inputs, do_postprocess=False)[0] | |
assert_instances_allclose(instance, scripted_instance) | |
def _test_retinanet_model(self, config_path): | |
model = model_zoo.get(config_path, trained=True) | |
model.eval() | |
fields = { | |
"pred_boxes": Boxes, | |
"scores": Tensor, | |
"pred_classes": Tensor, | |
} | |
script_model = scripting_with_instances(model, fields) | |
img = get_sample_coco_image() | |
inputs = [{"image": img}] * 2 | |
with torch.no_grad(): | |
instance = model(inputs)[0]["instances"] | |
scripted_instance = convert_scripted_instances(script_model(inputs)[0]) | |
scripted_instance = detector_postprocess(scripted_instance, img.shape[1], img.shape[2]) | |
assert_instances_allclose(instance, scripted_instance) | |
# Note that the model currently cannot be saved and loaded into a new process: | |
# https://github.com/pytorch/pytorch/issues/46944 | |
# TODO: this test requires manifold access, see: T88318502 | |
class TestTracing(unittest.TestCase): | |
def testMaskRCNNFPN(self): | |
def inference_func(model, image): | |
inputs = [{"image": image}] | |
return model.inference(inputs, do_postprocess=False)[0] | |
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func) | |
def testMaskRCNNFPN_with_postproc(self): | |
def inference_func(model, image): | |
inputs = [{"image": image, "height": image.shape[1], "width": image.shape[2]}] | |
return model.inference(inputs, do_postprocess=True)[0]["instances"] | |
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func) | |
def testMaskRCNNC4(self): | |
def inference_func(model, image): | |
inputs = [{"image": image}] | |
return model.inference(inputs, do_postprocess=False)[0] | |
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml", inference_func) | |
def testCascadeRCNN(self): | |
def inference_func(model, image): | |
inputs = [{"image": image}] | |
return model.inference(inputs, do_postprocess=False)[0] | |
self._test_model("Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml", inference_func) | |
# bug fixed by https://github.com/pytorch/pytorch/pull/67734 | |
def testRetinaNet(self): | |
def inference_func(model, image): | |
return model.forward([{"image": image}])[0]["instances"] | |
self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func) | |
def _check_torchscript_no_hardcoded_device(self, jitfile, extract_dir, device): | |
zipfile.ZipFile(jitfile).extractall(extract_dir) | |
dir_path = os.path.join(extract_dir, os.path.splitext(os.path.basename(jitfile))[0]) | |
error_files = [] | |
for f in glob.glob(f"{dir_path}/code/**/*.py", recursive=True): | |
content = open(f).read() | |
if device in content: | |
error_files.append((f, content)) | |
if len(error_files): | |
msg = "\n".join(f"{f}\n{content}" for f, content in error_files) | |
raise ValueError(f"Found device '{device}' in following files:\n{msg}") | |
def _get_device_casting_test_cases(self, model): | |
# Indexing operation can causes hardcoded device type before 1.10 | |
if not TORCH_VERSION >= (1, 10) or torch.cuda.device_count() == 0: | |
return [None] | |
testing_devices = ["cpu", "cuda:0"] | |
if torch.cuda.device_count() > 1: | |
testing_devices.append(f"cuda:{torch.cuda.device_count() - 1}") | |
assert str(model.device) in testing_devices | |
testing_devices.remove(str(model.device)) | |
testing_devices = [None] + testing_devices # test no casting first | |
return testing_devices | |
def _test_model(self, config_path, inference_func, batch=1): | |
model = model_zoo.get(config_path, trained=True) | |
image = get_sample_coco_image() | |
inputs = tuple(image.clone() for _ in range(batch)) | |
wrapper = TracingAdapter(model, inputs, inference_func) | |
wrapper.eval() | |
with torch.no_grad(): | |
# trace with smaller images, and the trace must still work | |
trace_inputs = tuple( | |
nn.functional.interpolate(image, scale_factor=random.uniform(0.5, 0.7)) | |
for _ in range(batch) | |
) | |
traced_model = torch.jit.trace(wrapper, trace_inputs) | |
testing_devices = self._get_device_casting_test_cases(model) | |
# save and load back the model in order to show traceback of TorchScript | |
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: | |
basename = "model" | |
jitfile = f"{d}/{basename}.jit" | |
torch.jit.save(traced_model, jitfile) | |
traced_model = torch.jit.load(jitfile) | |
if any(device and "cuda" in device for device in testing_devices): | |
self._check_torchscript_no_hardcoded_device(jitfile, d, "cuda") | |
for device in testing_devices: | |
print(f"Testing casting to {device} for inference (traced on {model.device}) ...") | |
with torch.no_grad(): | |
outputs = inference_func(copy.deepcopy(model).to(device), *inputs) | |
traced_outputs = wrapper.outputs_schema(traced_model.to(device)(*inputs)) | |
if batch > 1: | |
for output, traced_output in zip(outputs, traced_outputs): | |
assert_instances_allclose(output, traced_output, size_as_tensor=True) | |
else: | |
assert_instances_allclose(outputs, traced_outputs, size_as_tensor=True) | |
def testMaskRCNNFPN_batched(self): | |
def inference_func(model, image1, image2): | |
inputs = [{"image": image1}, {"image": image2}] | |
return model.inference(inputs, do_postprocess=False) | |
self._test_model( | |
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func, batch=2 | |
) | |
def testKeypointHead(self): | |
class M(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model = KRCNNConvDeconvUpsampleHead( | |
ShapeSpec(channels=4, height=14, width=14), num_keypoints=17, conv_dims=(4,) | |
) | |
def forward(self, x, predbox1, predbox2): | |
inst = [ | |
Instances((100, 100), pred_boxes=Boxes(predbox1)), | |
Instances((100, 100), pred_boxes=Boxes(predbox2)), | |
] | |
ret = self.model(x, inst) | |
return tuple(x.pred_keypoints for x in ret) | |
model = M() | |
model.eval() | |
def gen_input(num1, num2): | |
feat = torch.randn((num1 + num2, 4, 14, 14)) | |
box1 = random_boxes(num1) | |
box2 = random_boxes(num2) | |
return feat, box1, box2 | |
with torch.no_grad(), patch_builtin_len(): | |
trace = torch.jit.trace(model, gen_input(15, 15), check_trace=False) | |
inputs = gen_input(12, 10) | |
trace_outputs = trace(*inputs) | |
true_outputs = model(*inputs) | |
for trace_output, true_output in zip(trace_outputs, true_outputs): | |
self.assertTrue(torch.allclose(trace_output, true_output)) | |
class TestTorchscriptUtils(unittest.TestCase): | |
# TODO: add test to dump scripting | |
def test_dump_IR_tracing(self): | |
cfg = get_cfg() | |
cfg.MODEL.RESNETS.DEPTH = 18 | |
cfg.MODEL.RESNETS.RES2_OUT_CHANNELS = 64 | |
class Mod(nn.Module): | |
def forward(self, x): | |
return tuple(self.m(x).values()) | |
model = Mod() | |
model.m = build_backbone(cfg) | |
model.eval() | |
with torch.no_grad(): | |
ts_model = torch.jit.trace(model, (torch.rand(2, 3, 224, 224),)) | |
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: | |
dump_torchscript_IR(ts_model, d) | |
# check that the files are created | |
for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined", "model"]: | |
fname = os.path.join(d, name + ".txt") | |
self.assertTrue(os.stat(fname).st_size > 0, fname) | |
def test_dump_IR_function(self): | |
def gunc(x, y): | |
return x + y | |
def func(x, y): | |
return x + y + gunc(x, y) | |
ts_model = torch.jit.trace(func, (torch.rand(3), torch.rand(3))) | |
with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: | |
dump_torchscript_IR(ts_model, d) | |
for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined"]: | |
fname = os.path.join(d, name + ".txt") | |
self.assertTrue(os.stat(fname).st_size > 0, fname) | |
def test_flatten_basic(self): | |
obj = [3, ([5, 6], {"name": [7, 9], "name2": 3})] | |
res, schema = flatten_to_tuple(obj) | |
self.assertEqual(res, (3, 5, 6, 7, 9, 3)) | |
new_obj = schema(res) | |
self.assertEqual(new_obj, obj) | |
_, new_schema = flatten_to_tuple(new_obj) | |
self.assertEqual(schema, new_schema) # test __eq__ | |
self._check_schema(schema) | |
def _check_schema(self, schema): | |
dumped_schema = dump_dataclass(schema) | |
# Check that the schema is json-serializable | |
# Although in reality you might want to use yaml because it often has many levels | |
json.dumps(dumped_schema) | |
# Check that the schema can be deserialized | |
new_schema = instantiate(dumped_schema) | |
self.assertEqual(schema, new_schema) | |
def test_flatten_instances_boxes(self): | |
inst = Instances( | |
torch.tensor([5, 8]), pred_masks=torch.tensor([3]), pred_boxes=Boxes(torch.ones((1, 4))) | |
) | |
obj = [3, ([5, 6], inst)] | |
res, schema = flatten_to_tuple(obj) | |
self.assertEqual(res[:3], (3, 5, 6)) | |
for r, expected in zip(res[3:], (inst.pred_boxes.tensor, inst.pred_masks, inst.image_size)): | |
self.assertIs(r, expected) | |
new_obj = schema(res) | |
assert_instances_allclose(new_obj[1][1], inst, rtol=0.0, size_as_tensor=True) | |
self._check_schema(schema) | |
def test_allow_non_tensor(self): | |
data = (torch.tensor([5, 8]), 3) # contains non-tensor | |
class M(nn.Module): | |
def forward(self, input, number): | |
return input | |
model = M() | |
with self.assertRaisesRegex(ValueError, "must only contain tensors"): | |
adap = TracingAdapter(model, data, allow_non_tensor=False) | |
adap = TracingAdapter(model, data, allow_non_tensor=True) | |
_ = adap(*adap.flattened_inputs) | |
newdata = (data[0].clone(),) | |
with self.assertRaisesRegex(ValueError, "cannot generalize"): | |
_ = adap(*newdata) | |