rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
1.84 kB
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
TridentNet Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import (
default_argument_parser,
default_setup,
DefaultTrainer,
launch,
)
from detectron2.evaluation import COCOEvaluator
from tridentnet import add_tridentnet_config
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_tridentnet_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
def invoke_main() -> None:
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
if __name__ == "__main__":
invoke_main() # pragma: no cover