rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
2.39 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List
import torch
from detectron2.solver.lr_scheduler import LRScheduler, _get_warmup_factor_at_iter
# NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes
# only on epoch boundaries. We typically use iteration based schedules instead.
# As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean
# "iteration" instead.
# FIXME: ideally this would be achieved with a CombinedLRScheduler, separating
# MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it.
class WarmupPolyLR(LRScheduler):
"""
Poly learning rate schedule used to train DeepLab.
Paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs.
Reference: https://github.com/tensorflow/models/blob/21b73d22f3ed05b650e85ac50849408dd36de32e/research/deeplab/utils/train_utils.py#L337 # noqa
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
max_iters: int,
warmup_factor: float = 0.001,
warmup_iters: int = 1000,
warmup_method: str = "linear",
last_epoch: int = -1,
power: float = 0.9,
constant_ending: float = 0.0,
):
self.max_iters = max_iters
self.warmup_factor = warmup_factor
self.warmup_iters = warmup_iters
self.warmup_method = warmup_method
self.power = power
self.constant_ending = constant_ending
super().__init__(optimizer, last_epoch)
def get_lr(self) -> List[float]:
warmup_factor = _get_warmup_factor_at_iter(
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor
)
if self.constant_ending > 0 and warmup_factor == 1.0:
# Constant ending lr.
if (
math.pow((1.0 - self.last_epoch / self.max_iters), self.power)
< self.constant_ending
):
return [base_lr * self.constant_ending for base_lr in self.base_lrs]
return [
base_lr * warmup_factor * math.pow((1.0 - self.last_epoch / self.max_iters), self.power)
for base_lr in self.base_lrs
]
def _compute_values(self) -> List[float]:
# The new interface
return self.get_lr()