Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
from typing import List | |
import torch | |
from detectron2.solver.lr_scheduler import LRScheduler, _get_warmup_factor_at_iter | |
# NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes | |
# only on epoch boundaries. We typically use iteration based schedules instead. | |
# As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean | |
# "iteration" instead. | |
# FIXME: ideally this would be achieved with a CombinedLRScheduler, separating | |
# MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it. | |
class WarmupPolyLR(LRScheduler): | |
""" | |
Poly learning rate schedule used to train DeepLab. | |
Paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, | |
Atrous Convolution, and Fully Connected CRFs. | |
Reference: https://github.com/tensorflow/models/blob/21b73d22f3ed05b650e85ac50849408dd36de32e/research/deeplab/utils/train_utils.py#L337 # noqa | |
""" | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
max_iters: int, | |
warmup_factor: float = 0.001, | |
warmup_iters: int = 1000, | |
warmup_method: str = "linear", | |
last_epoch: int = -1, | |
power: float = 0.9, | |
constant_ending: float = 0.0, | |
): | |
self.max_iters = max_iters | |
self.warmup_factor = warmup_factor | |
self.warmup_iters = warmup_iters | |
self.warmup_method = warmup_method | |
self.power = power | |
self.constant_ending = constant_ending | |
super().__init__(optimizer, last_epoch) | |
def get_lr(self) -> List[float]: | |
warmup_factor = _get_warmup_factor_at_iter( | |
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor | |
) | |
if self.constant_ending > 0 and warmup_factor == 1.0: | |
# Constant ending lr. | |
if ( | |
math.pow((1.0 - self.last_epoch / self.max_iters), self.power) | |
< self.constant_ending | |
): | |
return [base_lr * self.constant_ending for base_lr in self.base_lrs] | |
return [ | |
base_lr * warmup_factor * math.pow((1.0 - self.last_epoch / self.max_iters), self.power) | |
for base_lr in self.base_lrs | |
] | |
def _compute_values(self) -> List[float]: | |
# The new interface | |
return self.get_lr() | |