Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : peike.li@yahoo.com | |
@File : soft_dice_loss.py | |
@Time : 8/13/19 5:09 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
from __future__ import print_function, division | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
try: | |
from itertools import ifilterfalse | |
except ImportError: # py3k | |
from itertools import filterfalse as ifilterfalse | |
def tversky_loss(probas, labels, alpha=0.5, beta=0.5, epsilon=1e-6): | |
''' | |
Tversky loss function. | |
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) | |
labels: [P] Tensor, ground truth labels (between 0 and C - 1) | |
Same as soft dice loss when alpha=beta=0.5. | |
Same as Jaccord loss when alpha=beta=1.0. | |
See `Tversky loss function for image segmentation using 3D fully convolutional deep networks` | |
https://arxiv.org/pdf/1706.05721.pdf | |
''' | |
C = probas.size(1) | |
losses = [] | |
for c in list(range(C)): | |
fg = (labels == c).float() | |
if fg.sum() == 0: | |
continue | |
class_pred = probas[:, c] | |
p0 = class_pred | |
p1 = 1 - class_pred | |
g0 = fg | |
g1 = 1 - fg | |
numerator = torch.sum(p0 * g0) | |
denominator = numerator + alpha * torch.sum(p0 * g1) + beta * torch.sum(p1 * g0) | |
losses.append(1 - ((numerator) / (denominator + epsilon))) | |
return mean(losses) | |
def flatten_probas(probas, labels, ignore=255): | |
""" | |
Flattens predictions in the batch | |
""" | |
B, C, H, W = probas.size() | |
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C | |
labels = labels.view(-1) | |
if ignore is None: | |
return probas, labels | |
valid = (labels != ignore) | |
vprobas = probas[valid.nonzero().squeeze()] | |
vlabels = labels[valid] | |
return vprobas, vlabels | |
def isnan(x): | |
return x != x | |
def mean(l, ignore_nan=False, empty=0): | |
""" | |
nanmean compatible with generators. | |
""" | |
l = iter(l) | |
if ignore_nan: | |
l = ifilterfalse(isnan, l) | |
try: | |
n = 1 | |
acc = next(l) | |
except StopIteration: | |
if empty == 'raise': | |
raise ValueError('Empty mean') | |
return empty | |
for n, v in enumerate(l, 2): | |
acc += v | |
if n == 1: | |
return acc | |
return acc / n | |
class SoftDiceLoss(nn.Module): | |
def __init__(self, ignore_index=255): | |
super(SoftDiceLoss, self).__init__() | |
self.ignore_index = ignore_index | |
def forward(self, pred, label): | |
pred = F.softmax(pred, dim=1) | |
return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=0.5, beta=0.5) | |
class SoftJaccordLoss(nn.Module): | |
def __init__(self, ignore_index=255): | |
super(SoftJaccordLoss, self).__init__() | |
self.ignore_index = ignore_index | |
def forward(self, pred, label): | |
pred = F.softmax(pred, dim=1) | |
return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=1.0, beta=1.0) | |