Update app.py
Browse files
app.py
CHANGED
@@ -100,7 +100,6 @@ import tensorflow_hub as tfh
|
|
100 |
import pandas as pd
|
101 |
import numpy as np
|
102 |
import seaborn as sns
|
103 |
-
import matplotlib.pyplot as plt
|
104 |
|
105 |
# Text preprocessor for bert based models
|
106 |
preprocessor = tfh.KerasLayer('https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-preprocess/2')
|
@@ -123,10 +122,6 @@ data = data[data["process"] == trainedProcess].drop(columns="process")
|
|
123 |
data['intent'] = data['intent'].astype('category')
|
124 |
data['intent_codes'] = data['intent'].cat.codes
|
125 |
|
126 |
-
# Display the distribution of codes
|
127 |
-
values = data['intent'].value_counts()
|
128 |
-
plt.stem(values)
|
129 |
-
|
130 |
"""#### Normalize data
|
131 |
|
132 |
### Text preprocessing
|
@@ -324,7 +319,7 @@ def getFlattenTasks(tasks) -> List[str]:
|
|
324 |
def taskSimilarity(text: str, tasks) -> int:
|
325 |
""" Returns the task index which is the most similar to the text """
|
326 |
return getTaskSimilarityIndex(torch.argmax(util.pytorch_cos_sim(
|
327 |
-
model.encode(text, convert_to_tensor=True),
|
328 |
model.encode(getFlattenTasks(tasks), convert_to_tensor=True)
|
329 |
)).item(), tasks)
|
330 |
|
@@ -419,13 +414,11 @@ def chatbot(input_text) -> None:
|
|
419 |
|
420 |
"""## Gradio app"""
|
421 |
|
422 |
-
chatbot("Koliko traje predaja dnevnika prakse")
|
423 |
-
|
424 |
iface = gr.Interface(
|
425 |
fn=chatbot,
|
426 |
inputs="text",
|
427 |
outputs=["text"],
|
428 |
-
title="
|
429 |
)
|
430 |
|
431 |
iface.launch()
|
|
|
100 |
import pandas as pd
|
101 |
import numpy as np
|
102 |
import seaborn as sns
|
|
|
103 |
|
104 |
# Text preprocessor for bert based models
|
105 |
preprocessor = tfh.KerasLayer('https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-preprocess/2')
|
|
|
122 |
data['intent'] = data['intent'].astype('category')
|
123 |
data['intent_codes'] = data['intent'].cat.codes
|
124 |
|
|
|
|
|
|
|
|
|
125 |
"""#### Normalize data
|
126 |
|
127 |
### Text preprocessing
|
|
|
319 |
def taskSimilarity(text: str, tasks) -> int:
|
320 |
""" Returns the task index which is the most similar to the text """
|
321 |
return getTaskSimilarityIndex(torch.argmax(util.pytorch_cos_sim(
|
322 |
+
model.encode(predictNER(text)["Task"], convert_to_tensor=True),
|
323 |
model.encode(getFlattenTasks(tasks), convert_to_tensor=True)
|
324 |
)).item(), tasks)
|
325 |
|
|
|
414 |
|
415 |
"""## Gradio app"""
|
416 |
|
|
|
|
|
417 |
iface = gr.Interface(
|
418 |
fn=chatbot,
|
419 |
inputs="text",
|
420 |
outputs=["text"],
|
421 |
+
title="Software module for answering questions on processes"
|
422 |
)
|
423 |
|
424 |
iface.launch()
|