rk3863 commited on
Commit
bc29378
β€’
1 Parent(s): f36d14f

Uploading food not food text classifier demo app.py

Browse files
Files changed (3) hide show
  1. README.md +12 -6
  2. app.py +41 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,18 @@
1
  ---
2
- title: Learn Hf Food Not Food Text Classifier Demo
3
- emoji: 🏒
4
- colorFrom: yellow
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 4.44.1
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
1
  ---
2
+ title: Food not Food Text Classifier app
3
+ emoji: πŸ—πŸš«πŸ₯‘
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
9
+ license: apache-2.0
10
  ---
11
 
12
+ # Food Not Food Text Classifier
13
+
14
+ Small demo to showcase a text classifier to determine if a sentence is about food or not food. (Completed the course on 4/10/2024)
15
+
16
+ DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
17
+
18
+ [Source code notebook](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import gradio as gr
4
+
5
+ from typing import TypedDict
6
+ from transformers import pipeline
7
+
8
+ # Create function to use our model on given text
9
+ def food_not_food_classifier(text: str) -> Dict[str, float]:
10
+ food_not_food_classifier = pipeline(task="text-classifcation",
11
+ # Because our model is on Hugging Face already, we can pass in the model name directly
12
+ model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased",
13
+ device="cuda" if torch.cuda.is_available() else "cpu",
14
+ top_k=None
15
+ )
16
+ outputs = food_not_food_classifier(text)[0]
17
+
18
+ output_dict = {}
19
+ for item in outputs:
20
+ output_dict[item["label"]] = item["score"]
21
+
22
+ return output_dict
23
+
24
+ description = """
25
+ A text classifier to determine if a sentence is about food or not food.
26
+
27
+ Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
28
+
29
+ See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
30
+ """
31
+
32
+ demo = gr.Interface(fn=food_not_food_classifier,
33
+ inputs="text",
34
+ outputs=gr.Label(num_top_classes=2),
35
+ title="πŸ—πŸš«πŸ₯‘ Food or Not Food Text Classifier",
36
+ description=description,
37
+ examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
38
+ ["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
39
+
40
+ if __name__ == "__main__":
41
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers