3DNBAShotChart / courtCoordinates.py
rj7002's picture
Create courtCoordinates.py
9a24494 verified
import pandas as pd
import numpy as np
class CourtCoordinates:
'''
Stores court dimensions and calculates the (x,y,z) coordinates of the outside perimeter,
three point line, backboard, hoop, and free throw line.
The default dimensions of a men's NCAA court.
'''
def __init__(self):
self.court_length = 94 # the court is 94 feet long
self.court_width = 50 # the court is 50 feet wide
self.hoop_loc_x = 25 # the hoop is at the center of the court length-wise
self.hoop_loc_y = 4.25 # the center of the hoop is 63 inches from the baseline
self.hoop_loc_z = 10 # the hoop is 10 feet off the ground
self.hoop_radius = .75
self.three_arc_distance = 23.75 # the NCAA men's three-point arc is 22ft and 1.75in from the hoop center
self.three_straight_distance = 22 # the NCAA men's three-point straight section is 21ft 8in from the hoop center
self.three_straight_length = 8.89 # the NCAA men's three-point straight section length is 8ft and 10.75in
self.backboard_width = 6 # backboard is 6ft wide
self.backboard_height = 4 # backboard is 4ft tall
self.backboard_baseline_offset = 3 # backboard is 3ft from the baseline
self.backboard_floor_offset = 9 # backboard is 9ft from the floor
self.free_throw_line_distance = 15 # distance from the free throw line to the backboard
@staticmethod
def calculate_quadratic_values(a, b, c):
'''
Given values a, b, and c,
the function returns the output of the quadratic formula
'''
x1 = (-b + (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)
x2 = (-b - (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)
return x1, x2
def __get_court_perimeter_coordinates(self):
'''
Returns coordinates of full court perimeter lines. A court that is 50 feet wide and 94 feet long
In shot chart data, each foot is represented by 10 units.
'''
width = self.court_width
length = self.court_length
court_perimeter_bounds = [
[0, 0, 0],
[width, 0, 0],
[width, length, 0],
[0, length, 0],
[0, 0, 0]
]
court_df = pd.DataFrame(court_perimeter_bounds, columns=['x','y','z'])
court_df['line_group'] = 'outside_perimeter'
court_df['color'] = 'court'
return court_df
def __get_half_court_coordinates(self):
'''
Returns coordinates for the half court line.
'''
width = self.court_width
half_length = self.court_length / 2
circle_radius = 6
circle_radius2 = 2
circle_center = [width / 2, half_length, 0]
circle_points = []
circle_points2 = []
num_points = 400 # Number of points to approximate the circle
for i in range(num_points):
angle = 2 * np.pi * i / num_points
x = circle_center[0] + circle_radius * np.cos(angle)
y = circle_center[1] + circle_radius * np.sin(angle)
circle_points.append([x, y, circle_center[2]])
for i in range(num_points):
angle = 2 * np.pi * i / num_points
x = circle_center[0] + circle_radius2 * np.cos(angle)
y = circle_center[1] + circle_radius2 * np.sin(angle)
circle_points2.append([x, y, circle_center[2]])
# Example radius of the free throw circle, adjust as needed
half_court_bounds = [[0, half_length, 0], [width, half_length, 0]]
half_df = pd.DataFrame(half_court_bounds, columns=['x','y','z'])
circle_df = pd.DataFrame(circle_points, columns=['x', 'y', 'z'])
circle_df['line_group'] = f'free_throw_circle'
circle_df['color'] = 'court'
circle_df2 = pd.DataFrame(circle_points2, columns=['x', 'y', 'z'])
circle_df2['line_group'] = f'free_throw_circle'
circle_df2['color'] = 'court'
half_df['line_group'] = 'half_court'
half_df['color'] = 'court'
return pd.concat([half_df, circle_df,circle_df2])
def __get_backboard_coordinates(self, loc):
'''
Returns coordinates of the backboard on both ends of the court
A backboard is 6 feet wide, 4 feet tall
Also adds a smaller rectangle inside the backboard starting at hoop height
'''
backboard_start = (self.court_width / 2) - (self.backboard_width / 2)
backboard_end = (self.court_width / 2) + (self.backboard_width / 2)
height = self.backboard_height
floor_offset = self.backboard_floor_offset
if loc == 'far':
offset = self.backboard_baseline_offset
elif loc == 'near':
offset = self.court_length - self.backboard_baseline_offset
# Backboard coordinates
backboard_bounds = [
[backboard_start, offset, floor_offset],
[backboard_start, offset, floor_offset + height],
[backboard_end, offset, floor_offset + height],
[backboard_end, offset, floor_offset],
[backboard_start, offset, floor_offset]
]
# Coordinates of the smaller rectangle
smaller_rect_width = 1.5 # Width of the smaller rectangle in feet
smaller_rect_height = 1 # Height of the smaller rectangle in feet
hoop_height = self.hoop_loc_z # Height of the hoop
# Smaller rectangle coordinates
smaller_rect_start_x = backboard_start + (self.backboard_width / 2) - (smaller_rect_width / 2)
smaller_rect_end_x = backboard_start + (self.backboard_width / 2) + (smaller_rect_width / 2)
smaller_rect_y = offset # Y coordinate same as the backboard
smaller_rect_bounds = [
[smaller_rect_start_x, offset, hoop_height],
[smaller_rect_start_x, offset, hoop_height + smaller_rect_height],
[smaller_rect_end_x, offset, hoop_height + smaller_rect_height],
[smaller_rect_end_x, offset, hoop_height],
[smaller_rect_start_x, offset, hoop_height]
]
# Combine coordinates into DataFrames
backboard_df = pd.DataFrame(backboard_bounds, columns=['x', 'y', 'z'])
backboard_df['line_group'] = f'{loc}_backboard'
backboard_df['color'] = 'backboard'
smaller_rect_df = pd.DataFrame(smaller_rect_bounds, columns=['x', 'y', 'z'])
smaller_rect_df['line_group'] = f'{loc}_smaller_rectangle'
smaller_rect_df['color'] = 'backboard' # Set color for smaller rectangle
return pd.concat([backboard_df, smaller_rect_df])
def __get_three_point_coordinates(self, loc):
'''
Returns coordinates of the three point line on both ends of the court
Given that the ncaa men's three point line is 22ft and 1.5in from the center of the hoop
'''
# init values
hoop_loc_x, hoop_loc_y = self.hoop_loc_x, self.hoop_loc_y
strt_dst_start = (self.court_width/2) - self.three_straight_distance
strt_dst_end = (self.court_width/2) + self.three_straight_distance
strt_len = self.three_straight_length
arc_dst = self.three_arc_distance
start_straight = [
[strt_dst_start,0,0],
[strt_dst_start,strt_len,0]
]
end_straight = [
[strt_dst_end,strt_len,0],
[strt_dst_end,0,0]
]
line_coordinates = []
if loc == 'near':
crt_len = self.court_length
hoop_loc_y = crt_len - hoop_loc_y
start_straight = [[strt_dst_start,crt_len,0],[strt_dst_start,crt_len-strt_len,0]]
end_straight = [[strt_dst_end,crt_len-strt_len,0], [strt_dst_end,crt_len,0]]
# drawing the three point line
line_coordinates.extend(start_straight)
a = 1
b = -2 * hoop_loc_y
d = arc_dst
for x_coord in np.linspace(int(strt_dst_start), int(strt_dst_end), 100):
c = hoop_loc_y ** 2 + (x_coord - 25) ** 2 - (d) ** 2
y1, y2 = self.calculate_quadratic_values(a, b, c)
if loc == 'far':
y_coord = y1
if loc == 'near':
y_coord = y2
line_coordinates.append([x_coord, y_coord, 0])
line_coordinates.extend(end_straight)
far_three_df = pd.DataFrame(line_coordinates, columns=['x', 'y', 'z'])
far_three_df['line_group'] = f'{loc}_three'
far_three_df['color'] = 'court'
return far_three_df
def __get_hoop_coordinates(self, loc):
'''
Returns the hoop coordinates of the far/near hoop
'''
hoop_coordinates_top_half = []
hoop_coordinates_bottom_half = []
hoop_loc_x, hoop_loc_y, hoop_loc_z = (self.hoop_loc_x, self.hoop_loc_y, self.hoop_loc_z)
if loc == 'near':
hoop_loc_y = self.court_length - hoop_loc_y
hoop_radius = self.hoop_radius
hoop_min_x, hoop_max_x = (hoop_loc_x - hoop_radius, hoop_loc_x + hoop_radius)
hoop_step = 0.1
a = 1
b = -2 * hoop_loc_y
for hoop_coord_x in np.arange(hoop_min_x, hoop_max_x + hoop_step/2, hoop_step):
c = hoop_loc_y ** 2 + (hoop_loc_x - round(hoop_coord_x,2)) ** 2 - hoop_radius ** 2
hoop_coord_y1, hoop_coord_y2 = self.calculate_quadratic_values(a, b, c)
hoop_coordinates_top_half.append([hoop_coord_x, hoop_coord_y1, hoop_loc_z])
hoop_coordinates_bottom_half.append([hoop_coord_x, hoop_coord_y2, hoop_loc_z])
hoop_coordinates_df = pd.DataFrame(hoop_coordinates_top_half + hoop_coordinates_bottom_half[::-1], columns=['x','y','z'])
hoop_coordinates_df['line_group'] = f'{loc}_hoop'
hoop_coordinates_df['color'] = 'hoop'
return hoop_coordinates_df
def __get_hoop_coordinates2(self, loc):
num_net_lines = 10 # Number of vertical lines in the net
net_length = 1.75 # Length of the net hanging down from the hoop (in feet)
initial_radius = self.hoop_radius # Radius at the top of the net
hoop_net_coordinates = []
hoop_loc_x, hoop_loc_y, hoop_loc_z = self.hoop_loc_x, self.hoop_loc_y, self.hoop_loc_z
if loc == 'near':
hoop_loc_y = self.court_length - hoop_loc_y
for i in range(num_net_lines):
angle = (i * 2 * np.pi) / num_net_lines
for j in np.linspace(0, net_length, num=10):
# Decrease the radius from the initial radius to half of it at the bottom
current_radius = initial_radius * (1 - (j / net_length) * 0.5)
x = hoop_loc_x + current_radius * np.cos(angle)
y = hoop_loc_y + current_radius * np.sin(angle)
z = hoop_loc_z - j
hoop_net_coordinates.append([x, y, z])
# Add lines on the other side (negative angles)
for i in range(num_net_lines):
angle = (i * 2 * np.pi) / num_net_lines + np.pi # Shift angles to cover the opposite side
for j in np.linspace(0, net_length, num=10):
current_radius = initial_radius * (1 - (j / net_length) * 0.5)
x = hoop_loc_x + current_radius * np.cos(angle)
y = hoop_loc_y + current_radius * np.sin(angle)
z = hoop_loc_z - j
hoop_net_coordinates.append([x, y, z])
hoop_net_df = pd.DataFrame(hoop_net_coordinates, columns=['x', 'y', 'z'])
hoop_net_df['line_group'] = f'{loc}hoop_net'
hoop_net_df['color'] = 'net' # Set color to Light Gray or any other color you prefer
return hoop_net_df
@staticmethod
def calculate_quadratic_values(a, b, c):
'''
Given values a, b, and c,
the function returns the output of the quadratic formula
'''
x1 = (-b + (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)
x2 = (-b - (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)
return x1, x2
def __get_free_throw_line_and_circle_coordinates(self, loc):
'''
Returns coordinates of the free throw line, circle at the center of the free throw line,
and lines extending from the free throw line to the baseline.
Also adds two parallel lines, each 2 feet away from the existing lines,
and a semicircle with a 4 ft radius starting at 3 ft or 91 ft from the baseline.
The free throw line is 15 feet from the backboard and spans from sideline to sideline.
The circle is centered on the free throw line and cuts the line in half.
'''
distance = 18
width = self.court_width
length = self.court_length
circle_radius = 6 # Radius of the free throw circle
semicircle_radius = 4 # Radius of the semicircle
offset = 2 # Offset distance for the additional lines
semicircle_start_distance_near = 3 # Starting distance from baseline for 'near'
semicircle_start_distance_far = 91 # Starting distance from baseline for 'far'
semicircle_start = semicircle_start_distance_near
semicircle_start2 = semicircle_start_distance_far
# Coordinates for the free throw line and the circle
if loc == 'far':
line_start = [17, length - distance, 0]
line_end = [width - 17, length - distance, 0]
circle_center = [width / 2, length - distance, 0]
baseline_y = length # Baseline is at the end of the court
left_offset = -offset
right_offset = offset
else:
line_start = [17, distance, 0]
line_end = [width - 17, distance, 0]
circle_center = [width / 2, distance, 0]
baseline_y = 0 # Baseline is at the start of the court
left_offset = -offset
right_offset = offset
# Generate circle coordinates
circle_points = []
num_points = 400 # Number of points to approximate the circle
for i in range(num_points):
angle = 2 * np.pi * i / num_points
x = circle_center[0] + circle_radius * np.cos(angle)
y = circle_center[1] + circle_radius * np.sin(angle)
circle_points.append([x, y, circle_center[2]])
# Generate semicircle coordinates
semicircle_points = []
num_points = 100 # Number of points to approximate the semicircle
for i in range(num_points + 1):
angle = np.pi * i / num_points
x = circle_center[0] + 4 * np.cos(angle)
y = semicircle_start + 5 * np.sin(angle)
semicircle_points.append([x, y, circle_center[2]])
semicircle_points2 = []
for i in range(num_points + 1):
angle = np.pi * i / num_points
x = circle_center[0] + 4 * np.cos(angle)
y = semicircle_start2 - 5 * np.sin(angle)
semicircle_points2.append([x, y, circle_center[2]])
# Coordinates for the straight lines extending to the baseline
left_line_start = [19, length - distance, 0] if loc == 'far' else [19, distance, 0]
left_line_end = [19, baseline_y, 0]
right_line_start = [width - 19, length - distance, 0] if loc == 'far' else [width - 19, distance, 0]
right_line_end = [width - 19, baseline_y, 0]
# Additional lines
left_offset_line_start = [19 + left_offset, length - distance, 0] if loc == 'far' else [19 + left_offset, distance, 0]
left_offset_line_end = [19 + left_offset, baseline_y, 0]
right_offset_line_start = [width - 19 + right_offset, length - distance, 0] if loc == 'far' else [width - 19 + right_offset, distance, 0]
right_offset_line_end = [width - 19 + right_offset, baseline_y, 0]
# Combine coordinates into DataFrames
free_throw_line_bounds = [line_start, line_end]
free_throw_line_df = pd.DataFrame(free_throw_line_bounds, columns=['x', 'y', 'z'])
free_throw_line_df['line_group'] = f'{loc}_free_throw_line'
free_throw_line_df['color'] = 'court'
circle_df = pd.DataFrame(circle_points, columns=['x', 'y', 'z'])
circle_df['line_group'] = f'{loc}_free_throw_circle'
circle_df['color'] = 'court'
semicircle_df = pd.DataFrame(semicircle_points, columns=['x', 'y', 'z'])
semicircle_df['line_group'] = f'free_throw_semicircle'
semicircle_df['color'] = 'court'
semicircle_df2 = pd.DataFrame(semicircle_points2, columns=['x', 'y', 'z'])
semicircle_df2['line_group'] = f'free_throw_semicircle2'
semicircle_df2['color'] = 'court'
left_line_df = pd.DataFrame([left_line_start, left_line_end], columns=['x', 'y', 'z'])
left_line_df['line_group'] = f'{loc}_free_throw_left_line'
left_line_df['color'] = 'court'
right_line_df = pd.DataFrame([right_line_start, right_line_end], columns=['x', 'y', 'z'])
right_line_df['line_group'] = f'{loc}_free_throw_right_line'
right_line_df['color'] = 'court'
# Additional offset lines
left_offset_line_df = pd.DataFrame([left_offset_line_start, left_offset_line_end], columns=['x', 'y', 'z'])
left_offset_line_df['line_group'] = f'{loc}_free_throw_left_offset_line'
left_offset_line_df['color'] = 'court'
right_offset_line_df = pd.DataFrame([right_offset_line_start, right_offset_line_end], columns=['x', 'y', 'z'])
right_offset_line_df['line_group'] = f'{loc}_free_throw_right_offset_line'
right_offset_line_df['color'] = 'court'
# Return combined DataFrame
return pd.concat([
free_throw_line_df,
circle_df,
semicircle_df2,
semicircle_df,
left_line_df,
right_line_df,
left_offset_line_df,
right_offset_line_df
])
def get_court_lines(self):
'''
Returns a concatenated DataFrame of all the court coordinates including the new free throw line.
'''
court_df = self.__get_court_perimeter_coordinates()
half_df = self.__get_half_court_coordinates()
backboard_home = self.__get_backboard_coordinates('near')
backboard_away = self.__get_backboard_coordinates('far')
hoop_away = self.__get_hoop_coordinates('near')
hoop_home = self.__get_hoop_coordinates('far')
net_away = self.__get_hoop_coordinates2('near')
net_home = self.__get_hoop_coordinates2('far')
three_home = self.__get_three_point_coordinates('near')
three_away = self.__get_three_point_coordinates('far')
free_throw_line = self.__get_free_throw_line_and_circle_coordinates('near')
free_throw_line2 = self.__get_free_throw_line_and_circle_coordinates('far') # Get free throw line coordinates
court_lines_df = pd.concat([court_df, half_df, backboard_home, backboard_away, hoop_away, hoop_home, three_home, three_away, free_throw_line,free_throw_line2,net_away,net_home])
return court_lines_df