rizavelioglu commited on
Commit
1ca8185
1 Parent(s): 05c2963
app.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import spaces
4
+ import torch
5
+ import torch.nn as nn
6
+ from diffusers import EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel
7
+ from huggingface_hub import hf_hub_download
8
+ from transformers import SiglipImageProcessor, SiglipVisionModel
9
+ from torchvision.io import read_image
10
+ import torchvision.transforms.v2 as transforms
11
+ from torchvision.utils import make_grid
12
+
13
+
14
+ class TryOffDiff(nn.Module):
15
+ def __init__(self):
16
+ super().__init__()
17
+ self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
18
+ self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
19
+ self.proj = nn.Linear(1024, 77)
20
+ self.norm = nn.LayerNorm(768)
21
+
22
+ def adapt_embeddings(self, x):
23
+ x = self.transformer(x)
24
+ x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1)
25
+ return self.norm(x)
26
+
27
+ def forward(self, noisy_latents, t, cond_emb):
28
+ cond_emb = self.adapt_embeddings(cond_emb)
29
+ return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
30
+
31
+
32
+ class PadToSquare:
33
+ def __call__(self, img):
34
+ _, h, w = img.shape # Get the original dimensions
35
+ max_side = max(h, w)
36
+ pad_h = (max_side - h) // 2
37
+ pad_w = (max_side - w) // 2
38
+ padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
39
+ return transforms.functional.pad(img, padding, padding_mode="edge")
40
+
41
+
42
+ # Set device
43
+ device = "cuda" if torch.cuda.is_available() else "cpu"
44
+
45
+ # Initialize Image Encoder
46
+ img_processor = SiglipImageProcessor.from_pretrained(
47
+ "google/siglip-base-patch16-512",
48
+ do_resize=False,
49
+ do_rescale=False,
50
+ do_normalize=False
51
+ )
52
+ img_enc = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-512").eval().to(device)
53
+ img_enc_transform = transforms.Compose([
54
+ PadToSquare(), # Custom transform to pad the image to a square
55
+ transforms.Resize((512, 512)),
56
+ transforms.ToDtype(torch.float32, scale=True),
57
+ transforms.Normalize(mean=[0.5], std=[0.5]),
58
+ ])
59
+
60
+ # Load TryOffDiff Model
61
+ path_model = hf_hub_download(
62
+ repo_id="rizavelioglu/tryoffdiff",
63
+ filename="tryoffdiff.pth", # or one of ["ldm-1", "ldm-2", "ldm-3", ...],
64
+ force_download=False
65
+ )
66
+ path_scheduler = hf_hub_download(
67
+ repo_id="rizavelioglu/tryoffdiff",
68
+ filename="scheduler/scheduler_config.json",
69
+ force_download=False
70
+ )
71
+ net = TryOffDiff()
72
+ net.load_state_dict(torch.load(path_model, weights_only=False))
73
+ net.eval().to(device)
74
+
75
+ # Initialize VAE (only Decoder will be used)
76
+ vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").eval().to(device)
77
+ torch.cuda.empty_cache()
78
+
79
+
80
+ # Define image generation function
81
+ @spaces.GPU(duration=75)
82
+ @torch.no_grad()
83
+ def generate_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
84
+ # Configure scheduler
85
+ scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler)
86
+ scheduler.is_scale_input_called = True # suppress warning
87
+ scheduler.set_timesteps(num_inference_steps)
88
+
89
+ # Set random seed
90
+ generator = torch.Generator(device=device).manual_seed(seed)
91
+ x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
92
+
93
+ # Process input image
94
+ cond_image = img_enc_transform(read_image(input_image))
95
+ inputs = {k: v.to(img_enc.device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
96
+ cond_emb = img_enc(**inputs).last_hidden_state.to(device)
97
+
98
+ # Prepare unconditioned embeddings
99
+ uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
100
+
101
+ # Denoising loop with mixed precision
102
+ with torch.autocast(device):
103
+ for t in scheduler.timesteps:
104
+ if guidance_scale > 1:
105
+ noise_pred = net(
106
+ torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])
107
+ ).chunk(2)
108
+ noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
109
+ else:
110
+ noise_pred = net(x, t, cond_emb)
111
+
112
+ scheduler_output = scheduler.step(noise_pred, t, x)
113
+ x = scheduler_output.prev_sample
114
+
115
+ # Decode preds
116
+ decoded = vae.decode(1 / 0.18215 * scheduler_output.pred_original_sample).sample
117
+ images = (decoded / 2 + 0.5).cpu()
118
+
119
+ # Create grid
120
+ grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
121
+ if is_upscale:
122
+ pass
123
+ else:
124
+ return transforms.ToPILImage()(grid)
125
+
126
+
127
+ title = "Virtual Try-Off Generator"
128
+ description = r"""
129
+ This is the demo of the paper <a href="https://arxiv.org/abs/2411.18350">TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models</a>.
130
+ <br>Upload an image of a clothed individual to generate a standardized garment image using TryOffDiff.
131
+ <br> Check out the <a href="https://rizavelioglu.github.io/tryoffdiff/">project page</a> for more information.
132
+ """
133
+ article = r"""
134
+ Example images are sampled from the `VITON-HD-test` set, which the models did not see during training.
135
+
136
+ <br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and
137
+ a citation:
138
+ ```
139
+ @article{velioglu2024tryoffdiff,
140
+ title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
141
+ author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
142
+ journal = {arXiv},
143
+ year = {2024},
144
+ note = {\url{https://doi.org/nt3n}}
145
+ }
146
+ ```
147
+ """
148
+ examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in sorted(os.listdir("examples/"))]
149
+
150
+ # Create Gradio App
151
+ demo = gr.Interface(
152
+ fn=generate_image,
153
+ inputs=[
154
+ gr.Image(type="filepath", label="Reference Image"),
155
+ gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed"),
156
+ gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance applied at s=1, hence faster inference."),
157
+ gr.Slider(value=20, minimum=0, maximum=1000, step=10, label="# of Inference Steps"),
158
+ gr.Checkbox(value=False, label="Upscale Output")
159
+ ],
160
+ outputs=gr.Image(type="pil", label="Generated Garment", height=512, width=512),
161
+ title=title,
162
+ description=description,
163
+ article=article,
164
+ examples=examples,
165
+ examples_per_page=4,
166
+ )
167
+
168
+ demo.launch()
examples/00084_00.jpg ADDED
examples/00151_00.jpg ADDED
examples/00254_00.jpg ADDED
examples/00345_00.jpg ADDED
examples/00348_00.jpg ADDED
examples/00397_00.jpg ADDED
examples/00475_00.jpg ADDED
examples/00617_00.jpg ADDED
examples/01229_00.jpg ADDED
examples/01242_00.jpg ADDED
examples/01320_00.jpg ADDED
examples/01399_00.jpg ADDED
examples/01486_00.jpg ADDED
examples/02244_00.jpg ADDED
examples/02390_00.jpg ADDED
examples/02871_00.jpg ADDED
examples/03199_00.jpg ADDED
examples/05537_00.jpg ADDED
examples/07160_00.jpg ADDED
examples/07194_00.jpg ADDED
examples/07208_00.jpg ADDED
examples/11967_00.jpg ADDED
examples/13912_00.jpg ADDED
examples/14227_00.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=2.4.0
2
+ torchvision>=0.19.0
3
+ diffusers>=0.29.2
4
+ transformers>=4.37.2
5
+ gradio>=5.7.0
6
+ spaces>=0.30.4
7
+ huggingface-hub>=0.26.2
8
+ #torchvision>=0.20.1
9
+ #diffusers>=0.31.0
10
+ #transformers>=4.46.3